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ABSTRACT 
Single-stage, 1-bit sigma-delta converters are in principle imperfectible.  We prove this fact.  The reason, simply 
stated, is that, when properly dithered, they are in constant overload.  Prevention of overload allows only partial 
dithering to be performed.  The consequence is that distortion, limit cycles, instability, and noise modulation can 
never be totally avoided.  We demonstrate these effects, and using coherent averaging techniques, are able to display 
the consequent profusion of nonlinear artefacts which are usually hidden in the noise floor.  Recording, editing, 
storage, or conversion systems using single-stage, 1-bit sigma-delta modulators, are thus inimical to audio of the 
highest quality.  In contrast, multi-bit sigma-delta converters, which output linear PCM code, are in principle 
infinitely perfectible. (Here, multi-bit refers to at least two bits in the converter.)  They can be properly dithered so 
as to guarantee the absence of all distortion, limit cycles, and noise modulation.  The audio industry is misguided if 
it adopts 1-bit sigma-delta conversion as the basis for any high-quality processing, archiving, or distribution format 
to replace multi-bit, linear PCM. 

 
 

 
0.  INTRODUCTION 
This paper is an enlarged and extended version of [1], and its 
findings regarding 1-bit sigma-delta modulators are explored in 
greater detail in an associated paper [2]. 
 
In the past twenty or so years we have seen the multi-bit converter 
technology used in professional and consumer equipment progress 
from 14, through 16 and 18, to 20 or more bits of resolution.  Indeed, 
the 16-bit linear PCM format became enshrined in the CD standard, 
and was the basis of most digital audio storage devices for many 

years.  All analogue-to-digital and digital-to-analogue conversions 
and intermediate digital signal processing steps were performed in 
the linear, multi-bit PCM format, using internal processing word-
lengths greater than the desired final numerical precision.  One 
primary benefit of this format is the fact that such systems can be 
rendered completely linear, with infinite resolution below the least 
significant bit (LSB), by the adoption of proper dithering at each 
quantizing, or (in the case of editing and signal processing) at each 
requantizing, stage.  Such dithering, with the optimal triangular 
probability density function (TPDF) dither, in principle completely 
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eliminates all distortion, noise modulation, and other signal-
dependent artefacts, leaving a storage system with a constant, signal-
independent, and hence benign noise floor (see [3] and [4]).  This is 
now well understood, and such practices have been the norm in the 
industry for over a decade.  In practice, of course, no actual analogue 
realization can achieve this theoretical perfection, but in the digital 
domain the departure from perfection can indeed be zero due to the 
numerical precision of the arithmetical operations involved.  
 
In recent years, we have seen the consumer audio industry perform a 
remarkable feat of salesmanship by proclaiming that 1-bit converters 
are better than multi-bit converters, and succeeding in marketing 1-
bit products as preferable for the highest-quality performance.  The 
original primary motivation for pursuing the 1-bit converter 
architecture was not superior performance, but rather the fact that it 
is cheaper to manufacture, consumes less power, and can operate 
well at the voltages used in battery-powered portable equipment.  
This has now become secondary, as 1-bit converters are currently 
used in consumer audio equipment at all price and quality levels.  
The manufacturers of high-quality converters struggled mightily to 
produce 1-bit devices that met the performance goals of the industry.  
But, they could never eliminate all the undesirable artefacts of such 
converters, and after more than a decade of trying, they came to the 
realization that they could produce better performance by using 
multi-bit converter architectures in their products.  The one inherent 
advantage of the 1-bit architecture, namely its avoidance of the level-
matching difficulties found in multi-bit converters, turned out not to 
be as significant a benefit as one might have thought.  If one 
examines the current data-sheets of all the major high-quality 
converter manufacturers, one finds that they have almost universally 
given up on the 1-bit sigma-delta topology in favor of oversampling 
converters using more than two levels.  Such converter architectures 
can avoid the intractabilities of both the 1-bit and the 20+ -bit 
designs.  They can be properly dithered, and can thus be guaranteed 
to be free of low-level, limit-cycle oscillations (“birdies”).  
Moreover, they do not suffer from the high-level instability problems 
of the higher-order, 1-bit sigma-delta converters. 
 
In light of the above, it is with alarm that we note the adoption of the 
single-stage, 1-bit sigma-delta converter architecture as the encoding 
standard for a next-generation (and supposedly higher-quality) 
consumer digital audio format.  We refer, of course, to the Direct 
Stream Digital (DSD)1 encoding which forms the basis of the Super 
Audio CD2 format introduced recently by Philips and Sony (see, for 
example, [5] and [6]).  The original intention to have the digital audio 
data at every stage of the processing — from the original analogue-
to-digital conversion, through all the editing and mastering 
operations — stored in the DSD 1-bit format has apparently now 
been abandoned.  This was a wise decision.  The conversion to the 
final 1-bit DSD format, however, still represents a required, and quite 
unnecessary, degradation of the quality of the audio signal.  Every 
single 1-bit data conversion entails an inevitable loss of signal quality 
in a way which need not occur with multi-bit, linear PCM.  The 
original rationale for storing a 1-bit DSD format signal on the Super 
Audio CD has now entirely vanished.  The analogue-to digital and 
digital-to-analogue conversions, and all intermediate digital signal 
processing, will likely be done using multi-bit converters and storage 
formats.  There really is no point in degrading the signal, by 
squeezing it onto a 1-bit Super Audio CD for transmission to the 
consumer, only to have it converted back to multi-bit PCM in the 
process of being played back.  We shall now explain our reasoning in 
detail. 
 
 
 
 

                                                 
1, 2 Trademarks of Philips Electronics NV and Sony Electronics Inc. 

 

1.  MULTI-BIT VERSUS 1-BIT CONVERTERS 
In a normal multi-bit digital audio system, the intention is that the 
quantizer (i.e., essentially the number system) is never deliberately 
driven into saturation.  Because one has enough levels available, 
avoiding saturation is not a significant problem in practice.  
Moreover, there is no problem in devoting a few LSBs of headroom 
to ensuring that quantization errors are properly dithered.  In straight 
linear PCM encoding, the proper (i.e., TPDF) dither spans precisely 
two LSBs.  For example, in a straight 16-bit system, the dither 
occupies only two out of the 65,536 levels available.  This causes a 
negligible reduction in system headroom in return for all the 
acknowledged benefits of properly-dithered signal manipulation.  If 
one wishes to reduce the data word-length used, one can recover the 
lost signal-to-noise ratio by a combination of oversampling and noise 
shaping.  Alternatively, one can increase the system’s signal-to-noise 
ratio by the use of oversampling and/or noise shaping, while leaving 
the word-length unchanged.  Noise shaping allows one to increase 
the signal-to-noise ratio in the audio band at the expense of 
decreasing it at frequencies above the audio band.  One can even use 
in-band noise shaping without oversampling to significantly increase 
the perceived signal-to-noise ratio (see [7] and [8]).  As long as the 
quantizer inside the noise shaper does not saturate, and is properly 
dithered, one is guaranteed that this process is completely 
transparent, in that it is totally distortion free. 
 
Noise shaping entails negative error feedback around the quantizer.  
In a noise shaper, a filter H(z) is used to spectrally shape the 
quantization error E.  Fig. 1 shows the architecture of a simple 
dithered noise-shaping quantizer. 
 

 
 
Figure 1.  Simple dithered noise-shaping quantizer. 
 
 
In this diagram, X is the input signal, N is the dither, W is the total 
input to the quantizer Q, and Y is the output signal.  The quantization 
error E is extracted around the dithered quantizer (which can be 
multi-bit or single-bit), and subtracted from the input after passing 
through the noise-shaping filter H(z).  H(z) can be either recursive or 
non-recursive.  This is the error feedback loop.  The signal in this 
loop is very small as long as the quantizer does not overload.  The 
dither N controls the statistics of the error signal E such that, with 
TPDF dither, E has zero mean, constant variance, and a constant 
white power spectral density, independent of the input signal — 
indeed, E is then uncorrelated with X.  This means that there is no 
distortion or noise modulation (see [3] and [4]).  In addition, the 
negative feedback loop is stable as long as there is no overload, and 
this is easily achieved with a multi-bit quantizer Q.  The theory of 
such dithered noise shapers can be found in [7], [8], and [9] for 
example.  In a sampled-data realization, the z-transforms of the input, 
X(z), output, Y(z), and error, E(z), are related by 
 

Y(z) = X(z) + {1 – H(z)}⋅E(z). 
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The signal thus passes through the system unchanged, and the 
quantization error E(z) appears at the output shaped by the effective 
noise-transfer function {1 – H(z)}, to become the system’s total error 
{1 – H(z)}⋅E(z).  Proper TPDF dither N controls the statistical 
properties and power spectrum of the error signal E, and hence 
controls the power spectrum of the shaped output error {1 – 
H(z)}⋅E(z).  For stable operation, and the least possible noise for a 
given noise-shaping curve, the equivalent noise-shaping filter {1 – 
H(z)} must be minimum phase.  Of course, for computability, H(z) 
must incorporate at least a single sample delay. 
 
It should be noted that, in the absence of proper dither in Fig. 1, the 
circuit exhibits not only the expected signal-dependent quantization 
distortions and noise modulations, but also low-level limit-cycle 
oscillations, because of the nonlinearity Q within the feedback loop.  
These “birdies” are input dc-offset dependent, and are frequency 
modulated by the audio signal.  They can be quite pernicious and 
audible, and are an artefact of undithered noise shapers in general, 
but are completely eliminated by proper dithering.  We shall consider 
quantizers Q(W) of the mid-riser type shown in Fig. 2, since this 
characteristic is most appropriate for the 1-bit case, which we shall 
shortly be considering. 
 

 
Figure 2.  Mid-riser quantization characteristic adopted. 

 
In Fig. 2, the size of the LSB is represented by ∆, so that the 
quantized output levels are ±∆/2, ±3∆/2, ±5∆/2, etc.  In an N-bit 
quantizer, there are 2N levels (i.e., LSBs).  In a 1-bit quantizer, 
however, there are only the two indicated central levels present, 
namely ±∆/2. 
 
At this point one should note a couple of very important facts: 
1) If the total input W to the quantizer always lies in the range –∆ 

≤ W < ∆, no additional output levels beyond ±∆/2 will be called 
upon, and a 1-bit quantizer will behave just like a multi-bit one.  
Under these conditions, the full theory of dithered multi-bit 
quantizers can be applied to deduce the system’s behaviour.  If 
W lies outside this range, however, the 1-bit quantizer 
overloads (i.e., saturates), and the multi-bit theory breaks down.  

2) The noise-shaper circuit of Fig. 1 is functionally completely 
equivalent to the single-stage sigma-delta converter, which 
forms the heart of the DSD 1-bit encoder of the Super Audio 
CD.  Simple circuit transformations allow one to convert the 
one configuration into the other.  This is exhibited in Fig. 3, 

which shows in (a) the most general noise-shaper topology, and 
in (b) its equivalent sigma-delta form.  In contradistinction to 
the error feedback of the noise-shaper topology (a), the 
equivalent sigma-delta topology (b) could be said to represent 
straight negative feedback.  (To obtain the most-frequently used 
sigma-delta structure, where the filtering is done solely in the 
forward path, we set F ≡ 1, and the forward-path filter then 
becomes {G/(1 − G)}.)  The advantage of looking at the circuit 
as a noise-shaper is that it is easier to understand than the 
sigma-delta circuit.  Moreover, the error signal E is explicitly 
available in the former topology, but is implicit in the latter.  
We shall use the basic noise shaper circuit of Fig. 1 for the 
experiments to follow.  Everything we have to say about the 
noise shaper thus applies equally to the corresponding sigma-
delta converter under the transformation shown in Fig. 3.  If the 
latter has enough bits so that it does not overload when properly 
dithered, it can thus in principle be perfect.  That it must 
misbehave when it has only two levels is what we want to 
prove. 

 

 
 
Figure 3.  Showing the general equivalence of the noise-shaper (a) 
and sigma-delta (b) topologies. 
 
 
We claim that a 1-bit sigma-delta converter must overload when 
properly dithered.  This follows at once, since the TPDF dither N, 
which is needed to fully linearize the quantizer, itself swings the 
quantizer’s input W over its full no-overload range of ±∆.  This is 
illustrated in Fig. 2.  To obtain the total quantizer input W, we must 
add to N both the input signal X and the fed back error signal {−HE} 
(see Fig. 1).  Now, the dither samples are statistically independent of 
the other signals in the loop, and so clearly the quantizer’s total input 
W has to produce overload, and its consequences — distortion, noise 
modulation, and instability — if there is any input or feedback.  One 
might think that one could maintain most of the benefits while 
preventing the overload caused by using full TPDF dither, by using 
only partial dithering and/or a reduced maximum input signal level.  
This is true.  But, reduction in the maximum signal level is 
undesirable because of its direct impact on the signal-to-noise ratio; 
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and, as we shall see, the needed reduction in dither level is so great 
that its main remaining benefit is the prevention of limit cycles and 
noise modulation, and not the reduction of distortion.  In the special 
case of the 1st-order sigma-delta modulator, one can prove that there 
exists a limited range of dither levels and of input signal levels which 
guarantees the absence of quantizer overload.  Such results are more 
elusive in the higher-order case.  These facts are demonstrated 
mathematically in the Appendix, to which we refer the interested 
reader.  The important point is that full TPDF dither is never 
allowable in a 1-bit noise shaper or sigma-delta modulator, and hence 
full linearity is never achievable either in principle or, of course, in 
practice. 
 
We wish to point out that we are not the first to have addressed the 
issue of dithering 1-bit sigma-delta converters.  In this area, 
Norsworthy’s research [10] is particularly comprehensive.  
Hawksford [11] and Stuart [12] have also previously voiced some of 
the same criticisms and comments as we do in this paper. 
 
 
 
2.  SIMULATIONS 
Simulations will serve to make our points clear.  For the sake of 
specificity we shall use a 64-times oversampled sigma-delta 
architecture, as envisaged by Philips and Sony in [5] and [6] for their 
DSD converter.  Our design, called Lip7ZP, attempts to shape the 
noise floor in a psychoacoustically beneficial manner, by suppressing 
the noise spectral density in the 3-4 and 12 kHz regions where the 
human ear is most sensitive (see [7] and [8]).  It is based on a 7th-
order noise-shaping transfer function {1 − H(z)}, having seven zeros 
and seven poles in the complex z-plane.  There is one real zero at dc, 
and three complex conjugate pairs of zeros just inside the unit circle, 
corresponding to frequencies of 4, 12, and 20 kHz.  This results in a 
psychoacoustically-shaped noise floor in the audio band.  The seven 
poles inside the unit circle have an approximate Butterworth 
alignment, and shelve the noise gain at frequencies above 70 kHz in 
order to maintain stability even in 1-bit mode.  (The design is not 
optimized, but is simply intended to illustrate the type of 
psychoacoustic noise shaping that can be achieved, and to serve as an 
illustrative vehicle for the purposes of exposition.)  The noise power 
spectral density rises at a rate of 140 dB per decade above 20 kHz.  
The theoretical spectral shape is shown in Fig. 4. 
 

 
 
 
Figure 4.  Theoretical power spectrum of the Lip7ZP noise shaper. 
 
 
The explicit expression for the Lip7ZP noise-shaping filter H(z) is 
given here so that interested readers can implement it and confirm 
the results which follow: 
 
 
 
 

H(z) = 
0.67147148261434210554 
*(z^2 - 1.8188518739882731732*z + 0.82800290523865701387) 
*(z^2 - 1.8703147300286237302*z + 0.88232721441979615814) 
*(z^2 - 1.9638172195444934487*z + 0.98421718272643295544)/ 
((z^2 - 1.9124580000000000000*z + 0.93559300000000000000) 
*(z^2 - 1.8047140000000000000*z + 0.82640000000000000000) 
*(z^2 - 1.7373740000000000000*z + 0.75810400000000000000) 
*(z - 0.85521900000000000000)) 

 
The reference sampling frequency is taken throughout to be the CD 
standard of 44.1 kHz, so that the DSD sampling rate is 64 × 44,100 
Hz = 2.8224 MHz.  For simplicity, we shall also set ∆ = 1, so that the 
LSB is 1 V (see Fig. 2).  All the time-domain figures which follow, 
display the time axis labelled in samples, at the DSD sampling rate of 
2.8224 MHz, and use LSBs on the vertical axis.  All the spectral 
figures show frequency on the horizontal axis (logarithmic or linear 
scale), up to the Nyquist frequency of 1.4112 MHz. On the vertical 
axis, 0 dB represents the power spectral density of  the white 
quantization noise of a properly TPDF-dithered quantizer.  This is 
the signal Ε in Fig. 1, and has a total noise power of ∆2/4 up to the 
Nyquist frequency, when the quantizer is dithered with a TPDF 
dither Ν.  The spectral curves represent one of the following two 
things: 
(a) The average of 64 successive power spectra, each obtained 

from a 16,384-point FFT of the output signal from the noise 
shaper, using a Hann3 window.  The power averaging results in 
a smoother curve (i.e., in reduced variance), but does not affect 
the level of the noise. 

(b) The FFT of the coherent (or synchronous) average of 65,536 
(i.e., 216) time records, each of 16,384 points.  This averaging 
reduces uncorrelated signal components, while leaving 
correlated components unaffected.  It lowers the uncorrelated 
part of the noise floor by 16 × 3 = 48 dB, while leaving its 
variance unchanged.  This technique allows us to see correlated 
nonlinear components which would otherwise have been 
hidden in the noise floor of the 16,384-point FFT.  It is 
equivalent noise-wise to averaging 65,536 complex spectra, or 
performing a single FFT on the impossibly long time record of 
216 × 214 = 230 = 1,073,741,824 points, and then decimating the 
result!  Again, a Hann3 window has been used.  (More 
information about the use of synchronous averaging will be 
found in the companion paper [2].) 

 
When undithered, Lip7ZP exhibits all the defects of undithered noise 
shapers and sigma-delta converters.  It needs only two output levels, 
even when driven to DSD full scale of ±∆/4, provided that it is not 
fully dithered.  It is also stable, within its overload range, even when 
operated in 1-bit mode.  We shall illustrate that, when undithered, it 
can: 
1) have audible limit cycles; 
2) display gross modulation of the noise floor in the audio band, 

as a function of the input signal; and 
3) produce harmonic and intermodulation distortion and other 

nonlinear effects. 
All these defects are, of course, banished when Lip7ZP is fully 
TPDF-dithered, but then it requires at least eight levels to prevent 
overload and instability. These are not available in 1-bit mode, and 
so complete linearization is not possible if it is used in a 1-bit sigma-
delta converter.  Partial dithering does, however, allow us to suppress 
limit-cycle oscillations, control the noise modulation, and somewhat 
reduce the audio-band nonlinearities.  Let us now show these effects. 
 
In the absence of dither, and with zero initial conditions, Lip7ZP 
displays a low-level limit-cycle oscillation of period 328 samples 
(and a very audible fundamental frequency of 8.605 kHz).  This 
“birdie” takes almost 16,000 samples before it is firmly established, 
but once established, it is very robust.  This shows that, contrary to 
some opinions, limit cycles can occur, and can be pernicious, even in 
high-order undithered modulators.  Fig. 5 shows precisely two 
periods of this complicated oscillation, as close inspection will 
reveal! 
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Figure 5.  Output signal of the undithered Lip7ZP noise shaper, with 
no input, showing exactly two periods of its limit cycle. 

 
 

An averaged power spectrum displays this periodicity clearly.  Fig. 6 
shows the result on a logarithmic frequency axis.  Harmonics are 
seen to be present all the way up to the Nyquist frequency.  The 
continuous curve running across the plot shows what this limit cycle 
changes into if we add to the quantizer 0.0013∆ peak-to-peak of 
rectangular probability density function (RPDF) dither — the 
minimum necessary to break up the limit cycle.  (This is an amount 
of dither 60.7 dB less than full TPDF dither.)  Note that this curve is 
not the proper shape (cf. Fig. 4), but this small amount of dither does 
serve (in this case) to produce a far more desirable type of 
background “noise”. 

 

 
 

Figure 6.  Averaged power spectrum of Fig. 5.  (The continuous 
curve running across the plot is explained in the text.) 

 
 
So, given that a little dither is a good thing, let us try using the proper 
amount of dither, namely, full TPDF dither of ±1 LSB width.  We 
already know that the system will need more than two quantizer 
levels, and indeed it does.  Fig. 7 shows that it occasionally needs up 
to ±4 levels; that is, a 3-bit quantizer is needed to avoid overload.  In 
fact, if one restricts this fully-dithered quantizer to just two levels, 

the system is unstable.  The time behaviour is now completely 
aperiodic, and this is reflected in the fact that the noise spectrum is 
now a continuous, rather than a line, spectrum. 
 

 
 
Figure 7.  TPDF-dithered Lip7ZP noise shaper output signal with no 
input, showing the need for a 3-bit quantizer (8 levels). 
 
 
The noise power spectral density corresponding to Fig. 7, shown in 
Fig. 8, follows precisely the theoretical shaper curve (compare with 
Fig. 4).  All limit cycles have been completely banished, and the 
output spectrum is noise-like rather than tonal.  Fig. 8 actually shows 
two superimposed curves for the TPDF-dithered Lip7ZP noise 
shaper.  One is the zero-input power spectrum, and the other is the 
power spectrum when a full-scale sine-wave signal of 22.05 kHz 
(i.e., on FFT bin 128) is applied to the input X.  (The full-scale signal 
is set at an amplitude of ∆/4, in accordance with the DSD 
specification, and reads +26.5 dB on our TPDF-normalized vertical 
axis.)  Note the complete absence of any noise modulation — the two 
curves overlay each other perfectly.  The only difference between 
these curves is the change due to the presence of the sinusoidal input. 
 

 
 
Figure 8.  Overlaid responses of a TPDF-dithered Lip7ZP noise 
shaper, both without and with a DSD full-scale 22.05 kHz sine-wave 
input.  The noise floor is completely unchanged when the input 
signal varies from zero to full scale. 
 
 
This superb performance will hold for any input signal, bandlimited 
to less than the Nyquist frequency, which does not drive the 
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converter into saturation.  This means that such a multi-bit noise 
shaper/sigma-delta modulator is in principle perfect, in that its only 
contribution is the addition of a benign constant background noise 
spectrum.  This is the best that any system, digital or analogue, can 
do. (The addition of noise is inevitable in either domain; the addition 
of nonlinear artefacts isn’t.) 
 
Synchronous averaging will help to demonstrate the complete lack of 
nonlinear distortions in this converter when TPDF dither is used.  In 
Fig. 9 we show two output spectra under the simultaneous input of 
two sine-wave signals, each of half full-scale amplitude (i.e., ∆/8 
each), on FFT bins 32 (5512.5 Hz) and 48 (8268.75 Hz).  Placing 
these signals precisely on FFT frequency bins ensures that they are 
indeed fully synchronous with the time records being transformed.  
Only eight quantizer levels are needed.  The upper trace is the result 
of incoherently averaging 64 power spectra, while the lower trace 
shows the FFT of 65,536 (= 216) coherently averaged data sets. The 
noise floor in the lower trace has the same variance as that of a single 
transformed data set, but its level has been reduced by 48 dB (= 16 × 
3 dB).  Each doubling of the number of coherently-averaged data sets 
lowers the noise floor by 3 dB, provided that it is incoherent, as is the 
case here in consequence of the TPDF dithering.  The synchronous 
input signals, on the other hand, are left unchanged by the averaging.  
Note the complete absence of any signal-related artefacts poking out 
from the lowered noise floor.  This is the beauty of proper dither!  
There is no distortion. 
 

 
 
Figure 9.  Here Lip7ZP is TPDF-dithered and subjected to the 
simultaneous application of two half-full-scale sine-wave signals.  
The upper trace shows the result of performing 64 power spectral 
averages on the quantizer output.  The lower trace shows how 65,536 
synchronous averages have uniformly lowered the uncorrelated noise 
floor by the expected 48 dB. 
 
 
Let us now try the same experiment using absolutely no dither, which 
is the way sigma-delta converters are often used.  Fig. 10 shows what 
we find.  The two traces correspond to those in Fig. 9.  We see that 
the coherent averaging has revealed a forest of harmonic and 
intermodulation products in the audio band lying just below the 
incoherent (upper) noise floor curve.  Only three of them actually 
poke out above this upper curve, and so without the benefit of 
synchronous averaging we would have been led to believe that there 
was very little distortion being produced.  Now we see many sum 
and difference products, including a strong first-order difference tone 
on bin 16 (2756.25 Hz), as expected.  Notice also that the high-
frequency portion of the lower curve (actually the whole upper half 
of the Nyquist band) has not been lowered by the coherent averaging.  
This indicates that these components are fully correlated with the 
input signal, and indeed represent the bulk of the total output error 

power.  Fig. 11 shows the same data as Fig. 10 on a linear frequency 
axis, to display the Nyquist region artefacts more clearly.  There is 
definitely something interesting going on here, which wouldn’t be 
nearly as apparent had we not performed the synchronous averaging.  
We shall show in [2] that these spectral lines are the FM sidebands of 
an idle tone whose frequency is being modulated by the input signal.  
Finally, comparing the upper traces of Figs 9 and 10, we see that 
both the level and shape of the noise spectrum in Fig. 10 are wrong  
(also cf. Fig. 4). 
 

 
 
Figure 10.  Here Lip7ZP is undithered and subjected to the same 
input signals as in Fig. 9.  The upper trace shows the result of 
performing 64 power spectral averages on the quantizer output.  The 
lower trace shows how 65,536 synchronous averages have revealed a 
plethora of nonlinear artefacts below the noise floor. 
 
 
 

 
 
Figure 11.  The same as Fig. 10, but displayed using a linear 
frequency axis. 
 
 
Figs 9 and 10 have revealed respectively the best and worst 
behaviour of Lip7ZP.  They are in fact quite typical of the generic 
behaviour of 1-bit noise shapers, as is shown in [2].  In Fig. 9 the 
quantizer is operating multi-bit due to the TPDF dither.  In Fig. 10 it 
is operating as a 1-bit device, exercising only the central two levels.  
Let us add as much dither as it can tolerate without 1-bit overload.  
We find that we can inject only 0.17 LSBs peak-to-peak of RPDF 
dither before additional levels become necessary.  This is only about 
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1/69th of the power of full TPDF dither (i.e., −18.4 dB relative to the 
power of TPDF dither).  How much benefit does this small dither 
provide?  Figure 12 shows the result.  Compared to Fig. 10 we see a 
general reduction in the higher-order audio-band products, but only 
modest decreases in most of the lower-order ones, which are close in 
frequency to the input signals.  (Interestingly, one will see on close 
inspection that some distortion components have actually increased 
as a result of this partial dither — look at the sixth spectral line to the 
right of the two input signals in Fig. 10, and compare it to Fig. 12!)  
None of the audio-band artefacts now pokes above the upper curve, 
and so they are invisible to straight power spectral averaging of 
16,384-point resolution.  One might have been led to wrongly 
conclude that this maximally-dithered 1-bit sigma-delta converter 
was free of audio-band distortion.  It is, however, still decidedly 
nonlinear. 
 

 
 
Figure 12.  Here Lip7ZP is given the maximum dither possible 
subject to no 1-bit overload (namely 0.17∆ peak-to-peak of RPDF 
dither), and subjected to the same input signals as in Fig. 9.  The 
upper trace shows the result of performing 64 power spectral 
averages on the quantizer output.  The lower trace (65,536 
synchronous averages) shows a modest reduction in distortion 
products compared to the undithered case (Fig. 10). 
 
 
So, partial dithering to the maximal extent possible within overload 
margins has helped, but only in a limited way.  It is, nevertheless, 
extremely desirable to do this for two other reasons: it reduces 
signal-dependent noise modulation, and it prevents limit-cycle 
oscillations from occurring.  We have already demonstrated the latter 
benefit in Fig. 6.  To demonstrate the former benefit, we shall 
perform two further experiments.  First, we compare the continuous 
curve from Fig. 6, corresponding to the zero-input case with the 
addition of the smallest smidgen of dither (0.013∆ peak-to-peak of 
RPDF) to break up the zero-input limit cycle, to the case of an 
undithered full-scale sine-wave of 22.05 kHz (i.e., on FFT bin 128).  
These power-averaged curves are overlaid in Fig. 13, and 
demonstrate the extent of the modulation of the noise floor due to the 
presence of signal — a substantial 10 dB over the audio band — and 
major changes in shape above 50 kHz.  Notice also the presence of 
the third- and fifth-harmonic distortion products of the input signal 
poking out from the undithered (upper) curve, and the many spectral 
lines near the Nyquist frequency.  The third harmonic is only 32 dB 
below the fundamental. 
 

 
 
Figure 13.  Showing the extent of the noise modulation in Lip7ZP 
when undithered.  See the text for details.  Both curves are the result 
of 64 power spectral averages. 
 
 
Second, we apply the maximum amount of RPDF dither which is 
compatible with the 1-bit no-overload criterion, namely 0.17 LSBs 
peak-to-peak of RPDF.  Fig. 14 shows two power spectral average 
curves overlaid, one corresponding to no input, and the other 
corresponding to a full-scale sine-wave input on bin 128 (i.e., 22.05 
kHz).  Compared to Fig. 13 we see that the noise modulation has 
been drastically reduced (to around 2 dB), but the third-harmonic 
distortion spike, and the Nyquist products are only slightly 
suppressed (the third harmonic has fallen by only 2 dB).  
Nevertheless, these results serve to confirm the benefits of using the 
maximum amount of dither that can be accommodated. 
 

 
 
Figure 14.  The same as Fig. 13, but using the maximum amount of 
dither possible without causing overload (0.17∆ peak-to-peak 
RPDF).  The noise modulation has been reduced to around 2 dB. 
 
 
Summarizing what we have learned from these simulations, a high-
order sigma-delta converter requires more than two levels in order to 
operate free of nonlinear artefacts, which it can do when properly 
dithered.  If it is then restricted to just the central two levels it will be 
constantly overloaded, and probably unstable.  Under these 
conditions, it can be only partially dithered, and so cannot be 
completely linearized.  The remaining nonlinearity is unfixable no 
matter how much negative feedback (i.e., noise shaping) is applied 
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around the quantizer.  (See [2] for more discussion of these matters.)  
More feedback will enable one to reduce the errors in some parts of 
the band under some signal conditions, but not throughout the whole 
audio band, and not with all legitimate inputs.  Negative feedback 
can work wonders but not miracles: it cannot reduce all errors to 
zero!  In this case there is a better alternative available — the multi-
bit converter.  The 1-bit sigma-delta system is in principle 
imperfectible, while there is no theoretical limit to how far the multi-
bit sigma-delta converter can be improved.  One is tempted to 
paraphrase Albert Einstein here: “A system should be as simple as 
possible, but no simpler”.  The single-stage, 1-bit sigma-delta 
converter is just too simple!  It is possible to make it surprisingly 
good for a system with such a gross nonlinearity, but this very 
nonlinearity severely limits its ultimate performance capability.  
Multi-bit converters do not have this limitation. 
 
 
 
3. FURTHER COMMENTS ON DSD AND 1-BIT SIGMA-
DELTA CONVERSION 
Referring now more specifically to the DSD encoding format, let us 
recall ([5], [6]) that this mandates the use of a single-stage, 1-bit 
sigma-delta converter running at 2.8224 megasamples/s per channel.  
This is four times the data rate of a single CD audio channel, and is 
very wasteful from an information-theoretic point of view [10], when 
compared with the information capacity of the human hearing 
system.  Be this as it may, it is nevertheless instructive to see what 
linear, multi-bit PCM is capable of at the same, or lower, data rate.  
There are many possible comparisons that could be made.  Using the 
Gerzon/Craven “noise-shaping theorem” [9], it is easy to construct 
possible scenarios.  We shall consider just four.  Bear in mind that a 
1-bit quantizer, switching between the two output levels of ±∆/2, has 
a constant total output power of ∆2/4.  Since the output power is 
constant, the signal component of the output must come at the 
expense of the remainder.  This argument shows that there inevitably 
must be correlated noise and error modulation accompanying its 
operation.  The best that could be hoped for would be that all such 
modulation effects occur only above the audio band.  This cannot, 
however, be guaranteed.  DSD defines a full-scale sine-wave signal 
to be 9 dB below this total output power (i.e., the total output power 
is +9 dBFS).  This corresponds to a peak amplitude of ∆/4 for a full-
scale sine-wave.  Calling this level 0 dBFS for DSD, and given that 
the system is to produce a noise floor at least 120 dB below full scale 
up to 20 kHz, rising rapidly above this frequency, one can compute 
that the noise power spectral density must be shaped by more than 
115 dB.  This enormous amount of noise shaping is the penalty for 
using a 1-bit converter.  The shaping is what produces the in-band 
signal-to-noise ratio.  Any multi-bit converter needs much less noise 
shaping to produce an equivalent result, because it starts with a better 
signal-to-noise ratio to begin with. 
 
(a) Let us consider 16-bit, four-times-oversampled PCM with noise 

shaping.  One of the claims for the superiority of DSD is its 
100-kHz bandwidth.  This must be tempered by knowledge that 
the steeply-rising (5th- to 7th-order) noise curve necessitates 
either an even steeper lowpass filter in the digital-to-analogue 
converter, so as to control the potentially destructive high-
frequency output noise, or else a premature roll-off of the band 
below 100 kHz.  The latter seems to be the current approach 
being adopted by the DSD originators, as their products roll off 
above 50 kHz.  The following scenarios are easily possible with 
properly-dithered 16-bit PCM at a sampling rate of 4 × 44,100 
= 176,400 Hz, which is the same data rate as DSD: 
• A noise floor 123 dB below full scale all the way up to 40 

kHz, using 48 dB of noise shaping, and a total noise 
power of –72 dBFS. 

• A noise floor 123 dB below full scale up to 20 kHz, using 
only 32 dB of noise shaping, and a total noise power of 
only –86 dBFS. 

Both these scenarios would have a frequency response flat to 
80 kHz.  Either is infinitely preferable to the DSD performance 
at the same data rate. 
 

(b) Next, consider 16-bit, two-times-oversampled PCM with noise 
shaping.  This is a data rate one-half that of DSD, with a 
sampling rate of 2 × 44,100 = 88,200 Hz.  It can achieve a noise 
floor 120 dB below full scale up to 20 kHz, using 48 dB of 
noise shaping, and a total noise power of –72 dBFS.  Its 
frequency response would be flat to 40 kHz. 

 
(c) Finally, consider 8-bit, four-times-oversampled PCM with 

noise shaping.  This is also a data rate one-half that of DSD and 
double that of CD, with a sampling rate of 4 × 44,100 = 
176,400 Hz.  It can achieve a noise floor 120 dB below full 
scale up to 20 kHz, using 96 dB of noise shaping, and a total 
noise power of  –19 dBFS.  Its frequency response would be 
flat to 80 kHz.  This example is perhaps the most instructive of 
the lot.  For a data rate one-half that of DSD, it achieves a 
comparable signal bandwidth, with a similar noise power 
density up to 20 kHz, but much lower power above this 
frequency, and 28 dB lower total noise power.  It is fully 
TPDF-dithered, and so is completely artefact free.  At one-half 
the data rate it outperforms DSD on every count! DSD is a 
profligate wastrel of capacity. 

 
It is instructive to see how the above numbers are calculated.  For the 
purposes of illustration, let us consider Example (c) above.  The four-
times oversampling spreads the quantization noise power over four 
times the CD’s bandwidth, and so reduces its noise power spectral 
density (PSD) by 6 dB.  Unshaped, but fully TPDF dithered, this 8-
bit system would thus have a noise PSD lying at −51.1 dBFS (= 49.9 
dB for an 8-bit system + 6 dB for the oversampling − 4.8 dB for the 
dither).  Allowing a generous 3-dB headroom reduction because of 
the dither, the noise PSD lies at −48.1 dBFS.  Now, the 
Gerzon/Craven “noise-shaping theorem” [9] tells us that the areas of 
any optimal noise shaper curve above and below the unshaped PSD 
must be equal when plotted on a linear-frequency/logarithmic-
amplitude basis.  Since we want to pull the shaped noise floor down 
to −120 dBFS over about one-quarter of the Nyquist band (say to 
22.05 kHz), the idealized shaping required is as shown in Fig. 15. 
 

 
 
Figure 15.  Illustrating the Gerzon/Craven “noise-shaping theorem” 
for the case of Example (c). 
 
 
The noise PSD below 20 kHz needs to be pulled down by 72 dB (= 
120 − 48 dB).  The equal-areas theorem mandates that the PSD over 
the remaining three-quarters of the Nyquist band will consequently 
be elevated by 24 dB (= 72/3 dB), so that the total amount of shaping 
is 96 dB (= 72 + 24 dB).  The total noise power can now be 
computed to be –19 dBFS.  Now, these calculations assume a ideal 
rectangular-shaped noise curve, as shown in Fig. 15.  This is, of 
course, not achievable with finite-order filters, and so these numbers 
must be taken merely as a useful approximate starting point for the 
actual design work.  We have implemented the design of Example (c) 
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using a 12th-order recursive filter for H(z), and have also taken the 
opportunity to provide some crude (non-optimized) psychoacoustic 
shaping, with dips around 3 and 12 kHz.  The actual result is shown 
in Fig. 16.  Notice how the curve obeys the equal-areas property.  
The simulated performance of this design shows a signal-to-noise 
ratio of 120.4 dB up to 20 kHz.  The TPDF dither uses up about 70 of 
the 256 levels available in this 8-bit system, so that our allowance for 
it was indeed conservative. 
 

 
 
Figure 16.  The realization of Example (c), incorporating a crude 
attempt at psychoacoustic shaping.  This figure should be compared 
with the idealized diagram shown in Fig. 15, which formed the basis 
for the design. 
 
 
 
4.  CONCLUDING REMARKS 
Some final comments and speculations can be made: 
• MASH-type multi-stage converters, using multi-bit 

quantization at the first-stage, are not subject to the same 
criticism as the single-stage 1-bit sigma-delta converter, 
provided that their quantizers do not overload. 

• The repeated 1-bit sigma-delta reconversions entailed by a 
misguided desire to store the data in DSD format after each 
intermediate processing stage, would result in the accumulation 
of significantly greater noise and nonlinear artefacts than would 
occur with any of the dithered multi-bit systems under 
corresponding conditions.  This is not a trivial matter, because 
each signal processing operation (even a trivial one, such as a 
gain change) results in the 1-bit DSD data stream turning into a 
multi-bit data stream! 

• Because of the insoluble theoretical problems discussed in this 
paper, we are unaware of any way to generate a Super Audio 
CD test disc which is both distortion-free and has a constant, 
signal-independent noise floor!  In the multi-bit domain, this is 
easily done using standard dithering methods.  Indeed, the 
measurement standards for PCM-based audio, developed by the 
Audio Engineering Society, mandate the use of TPDF dither.  
This is an impossibility for 1-bit digital audio. 

• The amount of negative feedback used in a 1-bit sigma-delta 
modulator striving to straighten its quantizer transfer 
characteristic, and simultaneously achieve a signal-to-noise 
ratio of 120 dB, far exceeds anything ever used before in high-
quality audio design.  Ironically, while a part of the industry 
mistakenly espouses low feedback for top quality, what we 
have here is the exact opposite touted as being even better! 

• Since it is the high amount of negative feedback at low 
frequencies that reduces the 1-bit distortion products to low 
levels in the audio band, it is not unexpected that we find the 
distortion products rising at high frequencies, where the 
corrective negative feedback has actually turned into positive 
feedback! 

• The high levels of ultrasonic noise and spuriae produced by an 
inadequately-filtered 1-bit sigma-delta converter pose a 

problem for audio amplifiers and loudspeakers, which can 
generate nonlinear distortion products in the baseband when 
subjected to this type of indignity.  One wonders how many of 
the perceived “differences” noted in Super Audio CD listening 
comparisons might be due to such nonlinear effects. 

• Just as it might be true that one can perceive ultrasonic signals 
that are correlated with the baseband signal, so too might the 
low-level, but correlated, distortion products that we have 
shown to exist within the baseband be perceptible, even though 
they would normally be thought to be below audibility.  Further 
research is needed here. 

• Since the Gerzon/Craven “noise-shaping theorem” implies 
equal areas above and below the unshaped noise floor on a 
logarithmic vertical axis, it follows that there will always be a 
net increase in the total noise power as a result of noise 
shaping, if the theoretical curve is adhered to.  Since the total 
output power of a 1-bit shaper is constant, it follows that, even 
in the absence of signal, the noise PSD of a 1-bit noise shaper 
cannot follow the theoretically-prescribed curve.  Its total 
output noise power must be less than the curve predicts.  Then, 
if an input signal is added, the noise power at the output must 
drop even further, so causing further noise PSD changes. 

• As a general principle, it is undesirable to repeatedly noise-
shape a signal as it progresses through various processing 
stages, since the total high-frequency noise power keeps 
accumulating.  This means that a signal should ideally always 
be kept at a wordlength at least as long as that required to 
preserve the signal’s baseband noise floor, irrespective of the 
incoming wordlength.  Thus a signal with 120 dB baseband 
signal-to-noise ratio, should never be processed and stored with 
less than a 24-bit wordlength all the way through to the final 
digital-to-analogue conversion, whether it is a shaped 1-bit 
DSD signal, a shaped 8-bit signal as envisaged in Example (c) 
of Section 3, or an unshaped 20- or 24-bit signal.  This 
principle should apply to both consumer and professional 
digital audio.  Noise shaping should only be used when storage 
or transmission limitations require data rates to be reduced.  
(Parenthetically, it seems perverse of DSD to unnecessarily go 
in the opposite direction by actually increasing the data rate!) 

• That the 1-bit converter is quite aberrant can also be gleaned 
from the following arguments.  The classical model for the 
quantization error E of an undithered multi-bit quantizer 
postulates that it has a power of ∆2/12.  The error power of a 1-
bit quantizer is (∆/2)2 = ∆2/4 under no-signal conditions — three 
times too large.  This error power is, moreover, independent of 
whether or not the 1-bit quantizer is dithered.  [Interestingly, a 
TPDF-dithered multi-bit quantizer’s error power is also ∆2/4 (= 
3∆2/12).]  We have already noted (in Section 3) that the 1-bit 
quantizer’s “noise” power must drop in the presence of any 
input signal, since its total output power is absolutely constant, 
thus unavoidably causing noise modulation.    We now see that, 
when outputting any signal, its error power must be less than 
the ∆2/4 error power of a TPDF-dithered multi-bit quantizer.  In 
addition, its error power spectrum is only approximately white, 
while that of the TPDF-dithered multi-bit quantizer is truly 
white, as guaranteed by dither theory ([3], [4]).  Hence, when 
modulated, its noise spectrum would be expected, on average, 
to lie below, and parallel to, that of the corresponding TPDF-
dithered multi-bit quantizer.  (Were the spectrum of E truly 
white for the 1-bit quantizer, the two curves would be exactly 
parallel, for the output error is just E as shaped by the linear 
filter {1 − H}.)  This is confirmed by what we found in Section 
2, and can be clearly exhibited by overlaying the upper curves 
of Figs 9 and 10.  This is done in Fig. 17, where in each case 
the input to the Lip7ZP shaper is two half-full-scale (i.e., ∆/8 
amplitude each) sine-waves on FFT bins 32 and 48.  Note too 
the considerable discrepancy between the shapes of the upper 
TPDF-dithered noise curve (which is the intended noise curve) 
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and the lower noise curve, which is that actually delivered by 
the undithered 1-bit sigma-delta modulator. 

 

 
 
Figure 17.  Overlay of the upper curves of Figs 9 and 10, showing 
that the 1-bit sigma-delta modulator’s noise spectrum lies, on 
average, below that of a TPDF-dithered multi-bit noise shaper.  Each 
trace is the result of performing 64 power spectral averages on the 
corresponding  quantizer output. 
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APPENDIX: Proof of Sigma-Delta Overload Inevitability in 
the 1st-Order Case 
We present the full mathematical proof of the inevitability of 
quantizer overload in the case of the 1st-order, 1-bit noise shaper.  
Our argument is an extension of that given by Gray [13].  In Fig. 1, 
this corresponds to setting H(z) = z–1, a single-sample delay, and 
allowing Q to saturate at the ±∆/2 levels.  As we have mentioned, 
this circuit corresponds precisely to the single-stage, 1st-order, 1-bit 
sigma-delta converter.  In this Appendix, we use lower case symbols 
to represent the time-domain signal quantities, and subscripts to 
denote the different sample-time instants 0, 1, 2, …, n, … .  So, xn 
denotes the input signal X at time instant n; yn denotes the output 
signal Y; νn denotes the dither signal N; wn denotes the quantizer 
input W; and εn denotes the quantization error signal E.  We define 
the quantizer output at the decision level by Q(0) = +∆/2.  From Fig. 
1, we deduce that these signals are related by the equations 
 
 wn = xn – εn–1 + νn for n = 1, 2, …, (A.1) 
and 
 
 yn = wn + εn – νn for n = 1, 2, … . (A.2) 
 
Without loss of generality, we may assume that the initial state is 
 
 ε0 = 0. (A.3) 
 
[If the initial state causes quantizer overload, then the circuit may 
take a finite number of steps before it comes within the no-overload 
region of operation, after which the analysis below will apply.] As 
already discussed, the 1-bit quantizer Q will operate without overload 
if, for each k = 1, 2, … , we have  
 
 –∆ ≤ wk < ∆, (A.4) 
 
or equivalently 
 
 –∆/2 < yk – wk ≤ ∆/2; 
 
i.e., by (A.2), if 
 
 –∆/2 + νk < εk ≤ ∆/2 + νk for k = 1, 2, … . (A.5) 
 
 
Case (1): No dither: νn ≡ 0 
  
By (A.1) and (A.3), w1 = x1 – ε0 = x1, and so, by (A.4), no overload 
occurs at step number 1, provided that 
 
 –∆ ≤ x1 < ∆, 
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and so certainly also under the more restrictive condition 
 
 –∆/2 ≤ x1 ≤ ∆/2. (A.6) 
 
We now use mathematical induction.  Suppose that no overload has 
occurred at steps k = 1, 2, …, n with the input restricted by 
 
  –∆/2 ≤ xk ≤ ∆/2, (A.7) 
 
a condition which includes (A.6).  Then, by the hypothesis and (A.5), 
we have 
 
 –∆/2 < εk ≤ ∆/2 for k = 1, 2, …, n, 
 
and so, by (A.1), 
 
 xn – ∆/2 ≤ wn+1 < xn+1 + ∆/2; 
 
i.e., also 
 
 –∆ ≤ wn+1 <∆ 
 
under condition (A.7).  Thus, by induction, no overload occurs for all 
k under condition (A.7).  In this case, the 1st-order, 1-bit sigma-delta 
converter operates without overload.  But, being undithered, it isn’t 
linear; it exhibits distortion, noise modulation, and low-level limit-
cycle oscillations just like any undithered multi-bit noise shaper. 
 
 
Let us now consider what happens if we dither the modulator. 
 
Case (2): –µ ≤ νn < µ for all n 
 
Here µ represents the peak dither amplitude.  By (A.1) and (A.3) 
 
 w1 = x1 – ε0 + ν1 = x1 + ν1, 
 
and so 
 
 x1 – µ ≤ w1 < x1 + µ; 
 
i.e., by (A.4), no overload occurs at step number 1 provided that 
 
 –∆ + µ ≤ x1 ≤ ∆ – µ. (A.8) 
 
Let us now suppose that no overload occurs for k = 1, 2, …, n under 
some (to be determined) condition on the input xk which also satisfies 
(A.8).  Then, by (A.5), we have 
 
 –∆/2 + νk < εk ≤ ∆/2 + νk for k = 1, 2, …, n, 
 
and so, by (A.1), 
 
 xn+1 – ∆/2 – νn + νn+1 ≤ wn+1 < xn+1 + ∆/2 – νn + νn+1. 
 
But since 
 
 –µ ≤ νk < µ for all k, 
 
we have 
 
 –2µ ≤ νn+1 – νn < 2µ, 
 
and so 
 
 xn+1 – ∆/2 – 2µ ≤ wn+1 < xn+1 + ∆/2 + 2µ. 
 
Thus, the no-overload condition 
 

 –∆ ≤ wn+1 < ∆ 
 
holds provided 
 
 –∆/2 + 2µ ≤ xk ≤ ∆/2 – 2µ for all k. (A.9) 
 
Note that this condition also guarantees the validity of (A.8).  Since 
(A.9) also requires that ∆ – 4µ ≥ 0, we must have µ ≤ ∆/4 for 
compatibility.  This compatibility condition limits the dither which 
can be applied before causing the quantizer to overload.  Now, 
mathematical induction leads us to conclude that for: 
 
(a) µ = 0: By (A.9) we recover again the condition (A.7) of Case 

(1). 
(b) 0 < µ < ∆/4: No overload occurs provided that the input is 

restricted by (A.9).  The input range is now less than (A.7), and 
since µ < ∆/4, the dither is only partial (full TPDF dither would 
require that µ = ∆), and thus distortion, noise modulation, and 
limit-cycle oscillations can still occur. 

(c) µ = ∆/4: For no overload to occur, we can allow no input at all; 
i.e., we must have xk ≡ 0 for all k. 

(d) µ > ∆/4: The compatibility condition is now violated, and 
overload is guaranteed to occur (even with no input) at some 
step n. 

 
Summarizing: A dithered 1st-order, 1-bit sigma-delta quantizer (or 
the equivalent 1st-order noise shaper) can operate without overload 
only if  µ < ∆/4, and then only if its input xk is restricted by (A.9).  
Since it is then under-dithered, distortion, noise modulation, and 
limit-cycle oscillations are not eliminated.  [Interestingly, choosing µ 
= ∆/6 gives the maximum possible no-overload input range of –∆/6 ≤ 
xk ≤ ∆/6.] When properly dithered [Case (2d) above with µ = ∆ for 
TPDF dither], it is impossible to prevent it from overloading. 
 
Having now proven that even the simplest (i.e., 1st-order) 1-bit 
sigma-delta converter cannot be properly dithered, and hence 
completely linearized, we ask what the situation is for higher-order, 
single-stage, 1-bit  sigma-delta modulators.  These, as we have said, 
are equivalent to the general noise shaper shown in Fig. 1, but with 
more complicated filters H(z).  In light of the above analysis, it 
should come as no surprise that the higher-order circuits, with their 
higher noise gains, are even more likely to overload than the simple 
example discussed above.  We will not attempt to present a full 
analysis.  They can only accept a small amount of dither without 
overload — very much less than full TPDF dither.  The 7th-order 
example Lip7ZP, used to illustrate Section 2, represents the type of 
shaping needed by a DSD modulator in order to achieve a signal-to-
noise ratio on the order of 120 dB up to 20 kHz using 64-times 
oversampling.  We saw that this modulator could accept only 0.17∆ 
peak-to-peak of RPDF dither without overload.  This represents a 
dither power 18.4 dB less than full TPDF dither!  This is the generic 
situation: the allowable dither cannot fully linearize a 1-bit quantizer. 


