
Deep Blue

Murray Campbell�

IBM T.J. Watson Research Center

Yorktown Heights, NY 10598, USA

mcam@us.ibm.com

A. Joseph Hoane Jr.

Sandbridge Technologies

1 N. Lexington Avenue

White Plains, NY 10601, USA

Joe.Hoane@SandbridgeTech.com

Feng-hsiung Hsu

Compaq Computer Corporation

Western Research Laboratory

250 University Avenue

Palo Alto, CA 94301, USA

Feng-hsiung.Hsu@compaq.com

August 1, 2001

Abstract

Deep Blue is the chess machine that defeated then-reigning World

Chess Champion Garry Kasparov in a six-game match in 1997. There

were a number of factors that contributed to this success, including:

� a single-chip chess search engine,

� a massively parallel system with multiple levels of parallelism,

� a strong emphasis on search extensions,

� a complex evaluation function, and

� e�ective use of a Grandmaster game database.

This paper describes the Deep Blue system, and gives some of the

rationale that went into the design decisions behind Deep Blue.

�The ordering of the authors is alphabetic.

1

1 Introduction

This paper describes the Deep Blue rcomputer chess system, developed at
IBM rResearch during the mid-1990's. Deep Blue is the culmination of a multi-
year e�ort to build a world-class chess machine. There was a series of machines
that led up to Deep Blue, which we describe below. In fact there are two dis-
tinct versions of Deep Blue, one which lost to Garry Kasparov in 1996 and the
one which defeated him in 1997. This paper will refer primarily to the 1997
version, and comparisons with the 1996 version, which we will call Deep Blue
I, will be made where appropriate. For clarity, we will sometimes refer to the
1997 version as Deep Blue II. A brief summary of the chess machines described
here can be found in Appendix B. A fuller history of the Deep Blue project can
be found in [15].

1.1 ChipTest and Deep Thought

Earlier e�orts in building a chess machine, ChipTest and Deep Thought, took
place at Carnegie Mellon University in the 1980's. In 1988 Deep Thought was the
�rst chess machine to beat a Grandmaster in tournament play. These systems
used a single-chip chess move generator [12] to achieve search speeds in the
neighborhood of 500,000 positions per second (ChipTest) to 700,000 positions
per second (Deep Thought). Deep Thought is described in detail in [17, 16].

1.2 Deep Thought 2

In 1989-90, part of the Deep Thought team (Anantharaman, Campbell, Hsu)
moved to the IBM T.J. Watson Research Center to continue the e�ort to build
a world-class chess machine. In late 1990, Joe Hoane replaced Thomas Anan-
tharaman in the group. Deep Thought 2, aka Deep Blue prototype, was the
�rst result of this e�ort. Although the primary purpose of the system was as an
intermediate stepping stone to Deep Blue, Deep Thought 2 played in a number
of public events from 1991 through 1995.

Although Deep Thought 2 used the same move-generator chip as Deep
Thought, it had four improvements:

1. Medium-scale multiprocessing. Deep Thought 2 initially had 24 chess
engines, although over time that number decreased as processors failed and
were not replaced. This compares with Deep Thought, which usually used
two processors (although there were four- and six-processor versions that
made a few appearances).

2. Enhanced evaluation hardware. The Deep Thought 2 evaluation
hardware used larger RAMs and was able to include a few additional
features in the evaluation function. Nonetheless, the evaluation function
was relatively simple. For example, the Deep Thought 2 hardware was not
able to recognize \bishops of opposite color", a feature that chess play-
ers know greatly increases the chance for a drawn endgame. In order to

2

address this (and other similar problems), the Deep Thought 2 system im-
plemented a software \band-aid" mechanism. Unfortunately this slowed
down the overall system speed and created numerous search anomalies at
the hardware/software boundary. In spite of these drawbacks, the miss-
ing evaluation function features were suÆciently important to use this
evaluation patch.

3. Improved search software. The search software was rewritten entirely
for Deep Thought 2, and was designed to deal better with the parallel
search, as well as implement a number of new search extension ideas. This
code would later form the initial basis for the Deep Blue search software.

4. Extended book [6]. The extended book (see Section 8.2) allowed Deep
Thought 2 to make reasonable opening moves even in the absence of an
opening book. This feature was also inherited by Deep Blue.

The major competitive successes of Deep Thought 2 included victories in the
1991 and 1994 ACM Computer Chess Championships, and a 3-1 win against
the Danish national team in 1993.

1.3 Deep Blue I

Deep Blue I was based on a single-chip chess search engine, designed over a
period of three years. The �rst chips were received in September of 1995. A
number of problems were found with these chips, and a revised version was
received in January of 1996.

Deep Blue I ran on a 36-node IBM RS/6000rSPTMcomputer, and used 216
chess chips. The chips each searched about 1.6-2 million chess positions per
second. Overall search speed was 50{100 million chess positions per second.

The full 36-node Deep Blue I played only six games under tournament con-
ditions, all in the February 1996 match with Garry Kasparov. This match was
won by Kasparov by a fairly decisive 4-2 score, although the match was tied at
2-2 after the �rst four games. Three additional tournament-condition matches
were played in preparation for the 1996 Kasparov match, all using a single-node
version of Deep Blue with 24 chess chips. This system, aka Deep Blue Jr., beat
Grandmaster Ilya Gurevich 1.5-.5, drew Grandmaster Patrick Wol� 1-1, and
lost to Grandmaster Joel Benjamin 0-2.1

1.4 Deep Blue II

After the 1996 match with Kasparov, it was clear that there were a number of
de�ciencies in the play of Deep Blue I. A series of changes were made in prepara-
tion for the rematch which took place in May of 1997. First, a new, signi�cantly
enhanced, chess chip was designed. The new chess chip had a completely re-
designed evaluation function, going from around 6,400 features to over 8,000.

1This last match went a long way to convincing us that Joel Benjamin would be an excellent
Grandmaster consultant to the Deep Blue team.

3

A number of the new features were in response to speci�c problems observed in
the 1996 Kasparov games, as well as in test games against Grandmaster Joel
Benjamin. The new chip also added hardware repetition detection, a number
of specialized move generation modes (e.g., generate all moves that attack the
opponent's pieces: see Section 3.1), and some eÆciency improvements that in-
creased the per chip search speed to 2-2.5 million positions per second. The
second major change was to more than double the number of chess chips in the
system, and use the newer generation of SP computer to support the higher
processing demands thereby created. A third change was the development of a
set of software tools to aid in debugging and match preparation, e.g., evaluation
tuning and visualization tools. Finally, we concluded that the searching ability
of Deep Blue was acceptable, and we spent the vast majority of our time between
the two matches designing, testing, and tuning the new evaluation function.

Deep Blue defeated Garry Kasparov in the 1997 match by a score of 3.5-
2.5. For this victory, the Deep Blue team was awarded the Fredkin prize for
defeating the human world champion in a regulation match. There were two
additional matches played by Deep Blue Jr. in preparation for the Kasparov
match. The two matches, against Grandmasters Larry Christiansen and Michael
Rohde, were both won by Deep Blue Jr. by a score of 1.5-.5.

2 System Overview

Deep Blue is a massively parallel system designed for carrying out chess game
tree searches. The system is composed of a 30-node (30-processor) IBM RS/6000
SP computer and 480 single-chip chess search engines, with 16 chess chips per SP
processor. The SP system consists of 28 nodes with 120 MHz P2SC processors,
and 2 nodes with 135 MHz P2SC processors. The nodes communicate with each
other via a high speed switch. All nodes have 1GB of RAM, and 4 GB of disk.
During the 1997 match with Kasparov, the system ran the AIX r4.2 operating
system. The chess chips in Deep Blue are each capable of searching 2 to 2.5
million chess positions per second, and communicate with their host node via a
microchannel bus. The chess chips are described in Section 3.

Deep Blue is organized in three layers. One of the SP processors is designated
as the master, and the remainder as workers. The master searches the top levels
of the chess game tree, and then distributes \leaf" positions to the workers for
further examination. The workers carry out a few levels of additional search,
and then distribute their leaf positions to the chess chips, which search the last
few levels of the tree.

Overall system speed varied widely, depending on the speci�c characteris-
tics of the positions being searched. For tactical positions, where long forcing
move sequences exist, Deep Blue would average about 100 million positions per
second. For quieter positions, speeds close to 200 million positions per second
were typical. In the course of the 1997 match with Kasparov, the overall aver-
age system speed observed in searches longer than one minute was 126 million
positions per second. The maximum sustained speed observed in this match

4

was 330 million positions per second.
Deep Blue relies on many of the ideas developed in earlier chess programs,

including quiescence search, iterative deepening, transposition tables (all de-
scribed in [24]), and NegaScout [23]. These ideas and others formed a very
sound basis for designing and building a chess-playing system. Nonetheless, in
creating a system as large and complex as Deep Blue, one naturally runs into rel-
atively unexplored territory. Before describing the components of Deep Blue in
detail (in Sections 3 through 8), it is worthwhile to discuss those characteristics
of Deep Blue that gave rise to new or unusual challenges.

1. Large searching capacity. Previous research in game tree search typi-
cally dealt with systems that searched orders of magnitude fewer positions
than Deep Blue. The best way to take advantage of this additional search-
ing power is not clear. Our work on the Deep Blue search was guided by
two main principles:

(a) The search should be highly non-uniform. It is well-known
that strong human players are able to calculate well beyond the depth
reachable by a uniform searcher of any conceivable speed. Our prefer-
ence for a highly selective search arose from the loss of Deep Thought
to Mike Valvo in a correspondence match [22], where it was clear to
us that Valvo searched signi�cantly deeper than Deep Thought. The
fact that we were hoping to play Garry Kasparov, a chess player
known for his complex attacking style, also �gured into this choice.

(b) The search should provide \insurance"2 against simple er-
rors. We wanted to be sure that all move sequences were explored
to some reasonable minimum depth. Early research into pruning al-
gorithms (e.g., null move pruning [3, 9]) did not provide us enough
evidence to warrant implementation in the hardware search of Deep
Thought 2 or Deep Blue. Even without pruning, and using highly se-
lective search,3 we felt that Deep Blue had suÆcient searching power
to satisfy our insurance needs. A three minute search on Deep Blue
would reach a full-width depth of 12.2 on average.4

Sections 4 and 5 describe the Deep Blue search algorithm.

2. Hardware evaluation. The Deep Blue evaluation function is imple-
mented in hardware. In a way, this simpli�es the task of programming
Deep Blue. In a software chess program, one must carefully consider
adding new features, always keeping in mind that a \better" evaluation
function may take too long to execute, slowing down the program to the
extent that it plays more weakly. In Deep Blue, one does not need to

2This is the terminology used in [18].
3Our experiments showed that Deep Blue typically sacri�ced two ply of full-width search

in order to execute the selective search algorithms.
4This estimate is based on a linear least squares �t on all the (iteration,log(time)) data

points from the 1997 match with Kasparov.

5

constantly re-weigh the worth of a particular evaluation function feature
versus its execution time: time to execute the evaluation function is a
�xed constant.5 On the other hand, it is not possible to add new features
to the hardware evaluation6, and software patches are painful and prob-
lematic, as noted above about Deep Thought 2. For the most part, one
must learn to either get by without a desired new feature, or manufacture
some surrogate out of the features that are already available. Additionally,
the extra complexity that is possible in the hardware evaluation function
creates an \embarrassment of riches". There are so many features (8,000)
that tuning the relative values of the features becomes a diÆcult task.
The evaluation function is described in Section 7.

3. Hybrid software/hardware search. The Deep Blue search combines
a software search, implemented in compiled C code on a general purpose
CPU, with a hardware search, encoded in silicon on the chess chip. The
software search is extremely exible, and can be changed as needed. The
hardware search is parameterized, but the general form of the search is
�xed. Thus it su�ers to some degree from the diÆculties similar to those
associated with the hardware evaluation function: new search behaviors
cannot be introduced, and the existing parameters require careful tuning.
There is also an additional diÆculty, namely choosing the best strategy
for switching from the software to the hardware search. The very fact that
the two searches are di�erent (see Table 1) can lead to horizon e�ects [4].

4. Massively parallel search. Deep Blue is a massively parallel system,
with over 500 processors available to participate in the game tree search.
Although there has been previous research in such systems [13, 8], inte-
grating a large scale parallel search with the selective search mechanisms
in Deep Blue created a new set of challenges. The parallel search and its
interaction with the selective search is described in Section 6.

3 The Chess Chip

The chip used in Deep Blue is described in detail in [14]. This section will give
a brief overview of the chip. Details of the functionality that is implemented
will be described in the later sections on the hardware search (Section 5) and
evaluation function (Section 7).

The chess chip divides into three parts: the move generator, the evaluation
function, and the search control. We will examine each of these in turn, followed
by a brief description of the on-chip support for external circuitry.

5Actually there is a distinction between slow and fast evaluation, and feature values can
have an impact here. See Section 3.2.

6There were limits on design time, chip area, and manufacturing cost/time which made it
diÆcult to build new chips.

6

Software Search Hardware Search
host processor, C code chess chip, state machines
explores tree near root explores tree near leaves
no quiescence search complex quiescence search

complex recursive extensions mostly local extensions
transposition table no transposition table

uses hardware search as uses on-chip static evaluation function
dynamic evaluation function

exible hardwired, limited con�gurability

Table 1: Comparison of hardware and software searches

3.1 Move generation

The move generator in the Deep Blue chip was based7 on the Deep Thought
move generator chip [12, 13, 17], which was in turn based on the move generator
of the Belle chess machine [7]. The Deep Blue chip has a number of additional
functions, including the generation of checking and check evasion moves, as well
as allowing the generation of certain kinds of attacking moves, which permits
improved quiescence searching. The chip also supports several search extensions,
including singular extensions [2].

The move generator is implemented as an 8 � 8 array of combinatorial
logic, which is e�ectively a silicon chessboard. A hardwired �nite state machine
controls move generation. The move generator, although it generates only one
move at a time, implicitly computes all the possible moves and selects one via
an arbitration network. Computing all the moves simultaneously is one way to
get minimum latency while generating moves in a reasonable order.

A reasonable move ordering, preferably as close to best-�rst as possible, is
an important consideration for eÆcient search in game trees. The chess chip
uses an ordering that has worked well in practice, �rst generating captures
(ordered from low value-valued pieces capturing high-value pieces to high-valued
capturing low-valued), followed by non-capture moves (ordered by centrality).
After a move has been examined, a mechanism exists for masking it out and
generating the next move in sequence.

3.2 Evaluation function

The evaluation function implemented in the Deep Blue chip is composed of a
\fast evaluation" and a \slow evaluation" [7]. This is a standard technique to
skip computing an expensive full evaluation when an approximation is good
enough. The fast evaluation, which computes a score for a chess position in a
single clock cycle, contains all the easily computed major evaluation terms with
high values. The most signi�cant part of the fast evaluation is the \piece place-
ment" value, i.e., the sum of the basic piece values with square-based location

7The Deep Blue move generator is actually a superset of the Deep Thought move generator.

7

adjustments. Positional features that can be computed quickly, such as \pawn
can run", are also part of the fast evaluation. The slow evaluation scans the
chess board one column at a time, computing values for chess concepts such
as square control, pins, x-rays, king safety, pawn structure, passed pawns, ray
control, outposts, pawn majority, rook on the 7th, blockade, restraint, color
complex, trapped pieces, development, and so on. The features recognized in
both the slow and fast evaluation functions have programmable weights, allow-
ing their relative importance to be easily adjusted.

3.3 Search control

The search control portion of the chip uses a number of state machines to
implement null-window alpha-beta search. The advantage of null-window search
is that it eliminates the need for a value stack, simplifying the hardware design.8

The disadvantage is that in some cases it is necessary to do multiple searches,
for example when an exact score is needed.

Another limitation on the hardware search is the lack of a transposition
table, which is known to improve search eÆciency signi�cantly in many cases.
The e�ect of this limitation is lessened by the fact that the upper levels of the
Deep Blue search are in software and have access to a transposition table.

The search requires a move stack to keep track of moves that have been
explored so far at each level of the search tree. The move stack in Deep Blue
II includes a repetition detector, which was not included in Deep Blue I. This
detector contained a 32-entry circular bu�er of the last 32 ply. Using a content-
addressable memory algorithm [13], the repetition detector maintains the num-
bers of pieces displaced in each of the last 32 positions with respect to the current
board position. When the number of pieces displaced equals zero, we have a
repeated position. If the number of pieces displaced equals one, the hardware
can recognize the presence of a legal move that would lead to repetition, and
bound the score appropriately. A displaced count of one also can trigger the
\no progress" condition: see Section 4.3.

3.4 Extendability

The chess chips optionally support the use of an external FPGA (Field Pro-
grammable Gate Array) to provide access to an external transposition table,
more complicated search control, and additional terms for the evaluation func-
tion. In theory this mechanism would have allowed the hardware search to
approach the eÆciency and complexity of the software search. Null move search
was also explicity supported by this method. Due to time constraints, this
capability was never used in Deep Blue.

8The alpha-beta algorithm normally maintains two values, alpha and beta, on a stack.

8

4 Software Search

Based on the experiences with Deep Thought 1, a new selective search was built
for Deep Thought 2 (which would later form the basis for the Deep Blue selective
search). This search, which we call \dual credit with delayed extensions" was
designed based on a number of principles:.

1. Extend forcing/forced pairs of moves. An important part of tactics
in chess concerns forcing/forced pairs (�p's) of moves.9 These show up in
various contexts, e.g.,

(a) White has an unstoppable winning threat. Black has numerous delay-
ing moves (e.g., checks, mate threats, attacks on high valued pieces,
etc.) which demand precise responses by White. Eventually the de-
laying moves run out and the White win is discovered.

(b) White has a series of sacri�ces and immediate threats, which even-
tually result in checkmate or the win of material greater than that
sacri�ced.

Ideally one would extend the search two ply for each �p. This almost
always leads to a \search explosion", i.e., an e�ectively non-terminating
search. The following techniques are intended to address this problem.

2. Forced moves are expectation dependent. A move may be forced
for one level of expectation and not forced for another. A move that is
\fail low", i.e., below the current level of expectation, is never considered
forced in the Deep Blue search. This restriction is also described in [2].

3. Fractional extensions [20]. It is not feasible to fully extend all the �p's
without the search exploding. First of all, there may be more than one
reasonable response to a forcing move, though by the de�nition of forcing
there should only be a small number of reasonable responses. Second,
even forced moves usually have legal alternatives which must be refuted.
One method of addressing this problem is to allow fractional extensions,
where an �p does not get a full 2-ply extension, but rather some smaller
amount, say 1.75 ply. The less forcing the �p, the less the extension.

4. Delayed extensions. Often an isolated �p is meaningless, and in any
case it is not that hard to \search through". Things usually become
interesting (and more diÆcult) when there is a series of �p's. One response
to this observation is to allow �p's to accumulate \credit", and only when
suÆcient credit is available can it be \cashed in" for an extension. By
setting this threshold appropriately, extensions are delayed until multiple
�p's occur in a given path.

9A move that is forced must have a backed up score signi�cantly better (by more than some
threshold) than the backed up score of all the available alternatives. This can be generalized
to the case where there are a very small number of moves better than all the alternatives.

9

5. Dual credit. An immediate and serious problem that arises in the above
is on the \principal variation" (PV). The PV represents current best play
for both sides, i.e., both sides are at their level of expectation. In this
case, both sides may be forced to some degree, and both sides are not fail
low, which allows credit to be accumulated. Clearly it is not feasible to
accumulate more than 1 ply of credit for several PV moves in a row: the
search will explode. One solution to this problem is to separate and accu-
mulate the credit for the two sides separately.10 If either side accumulates
suÆcient credit to cash in for an extension, the other side must give up
an equal amount of credit.

6. Preserve the search envelope. As observed in [2], it is essential to
preserve the search envelope to avoid an oscillating search.

Figure 1 illustrates some of the basic ideas in the dual credit with delayed
extensions algorithm. The pseudo-code is based on a depth-limited version of
alpha-beta using the negamax formulation [19]. Lines added to the basic alpha-
beta code are marked with a *".

The �rst di�erence we note is in line 5, where the two credits are passed
recursively as parameters in the call to DC. The next signi�cant point is lines 14
through 19. Here is where an extension may take place. In line 14, CREDIT LIMIT
is the \cash-in" threshold. Line 15 calculates the number of plies of extension
to be performed, which is the integer number of plies needed to bring hisCredit
below CREDIT LIMIT. Given a CREDIT LIMIT of 2, as is used in Deep Blue,
a value of hisCredit of 2.5 gives a 1 ply extension, and a hisCredit value of 3.25
gives a 2 ply extension. Note that as the extension is performed (line 18), both
hisCredit and myCredit are reduced by the corresponding amount (though not
below zero).

Until line 26, the code is similar to alpha-beta. Line 26 swaps hisCredit
and myCredit as is required by the negamax framework, and recursively calls
the search on the current successor position. Line 28 is reached if the current
move has exceeded the previous bestScore. This is the prerequisite for credit to
be given. GenerateCredit() hides a wealth of details, including full or reduced
depth o�set searches and null move threat tests. If credit is generated for the
current move,11 the search on the successor position is reinvoked (line 30) with
the new credit added in. This time, if the score exceeds bestScore, it becomes
the new bestScore (line 32).

To simplify this description, we have skipped over issues related to preserving
the search envelope. In an actual implementation, it would be essential to know
the amount of credit generated in earlier appearances of this position, and search
with at least that amount of credit. This avoids oscillating searches, as well
as signi�cantly reducing the number of re-searches (line 29). Details such as
checkmate and stalemate have also been glossed over.

10[21] suggested separating the depth computation for the two sides, though not in the
context of a credit system.

11Note that the generated credit can be fractional. Deep Blue has a granularity of 1/4 ply.

10

1 int DC(

2 position p,

3 int alpha, int beta,

4 int depthToGo,

5* float myCredit, float hisCredit)

6 {

7 int numOfSuccessors;

8 int bestScore;

9 int i;

10 int sc;

11* float newCredit;

12* int extensionAmount;

13

14* if (hisCredit >= CREDIT_LIMIT) {

15* extensionAmount = ceiling(hisCredit - CREDIT_LIMIT);

16* hisCredit = hisCredit - extensionAmount;

17* myCredit = max(myCredit-extensionAmount,0);

18* depthToGo = depthToGo + extensionAmount;

19* }

20

21 if (depthToGo == 0) { return Evaluate(p); }

22

23 bestScore = alpha;

24 numOfSuccessors = GenerateSuccessors(p);

25 for (i = 1; i <= numOfSuccessors; i++) {

26* sc = -DC(p.succ[i],-beta,-alpha,depthToGo-1,hisCredit,myCredit);

27 if (sc > bestScore) {

28* newCredit = GenerateCredit();

29* if (newCredit > 0)

30* sc = -DC(p.succ[i],-beta,-alpha,depthToGo-1,hisCredit,myCredit+newCredit);

31* if (sc > bestScore)

32 bestScore = sc;

33 }

34 if (bestScore >= beta) { return bestScore; }

35 }

36 return bestScore;

37 }

Figure 1: The Dual Credit Algorithm

11

4.1 Credit Generation Mechanisms

There is a large set of mechanisms to identify nodes that should receive credit.

1. Singular, binary, trinary, etc.12

A singular move is one that is signi�cantly better than all the alternatives
[2]. One can generalize this to the case where there are two, three or more
good moves. Of course the more reasonable moves that are available, the
less credit that should be given. It is clear that a large part of what a
strong human chess player would de�ne as forcing is covered by singularity.
It is in just these kinds of positions that Grandmasters are able to calculate
very deeply.

2. Absolute singular

When there is only one legal move a large credit can be given with very
little risk. The reason is that, if the absolute singular move ends up failing
low, there are no alternatives to examine so the cost is contained. It is
reasonable in many cases to give a full two ply extension. This type of
move is usually a check evasion move.

3. Threat, mate threat

It is relatively simple using a null move search to detect if there is a threat
in the current position [1]. A null move search is a search conducted after
one side passes. The intuition here is that if one side passes, then loses
quickly, that side is deemed to have a pending threat against it which the
other side is close to exploiting. Positions where a threat exists tend to
be constrained in the number of reasonable alternatives. If a large threat
exists, such as a threat to checkmate, a higher level of credit can be given.
The Deep Blue implementation required that recent ancestors of a given
position have forcing characteristics before a threat credit is given.

4. Inuence

This mechanism gives credit for moves which are enabled by previous
moves. For example, credit may be given for an apparently good white
response to a black move which was not available the previous time black
moved. The idea here is that we assume black is developing a combination
even if we don't quite see what the combination is.

5. Domain dependent

Traditional search extension schemes, such as check evasion and passed
pawn pushes, can also be incorporated into this method. For example, a
passed pawn push can be considered a forcing move, and the response, if
it does not fail low, can generate credit.

12This terminology is borrowed from stellar astronomy, where it is used to count the number
of stars in a system.

12

Iteration Minimum Maximum Estimated maximum
software depth software depth combined depth

6 2 5 11-21
7 3 6 12-22
8 4 11 17-27
9 5 15 21-31
10 6 17 23-33
11 7 20 26-36
12 8 23 29-39

Table 2: Search characteristics, Position 1

Many of these methods require auxiliary computation in order to gather the
information necessary to make extension decisions. This was in line with our
philosophy of using the tremendous raw searching power of Deep Blue to enable
a more selective search.

The credit assigned for various conditions is depth dependant, with positions
near the root of the tree generally receiving more credit than positions far from
the root. This choice allowed quicker resolution of moderately deep forcing lines
without allowing the search to explode.

4.2 Sample Behavior

The following gives a sample of the behavior of Deep Blue in two quite di�erent
positions. The �rst position13 is before White's move 37 in the game Deep
Blue-G. Kasparov, Match game 2, New York, 1997, and contains some forcing
tactical lines. The second position14 is before Black's move 11 in the �fth game
of the same match, and would not normally be considered a tactical position.
For better observability, this experiment was run on Deep Blue Jr., a version of
Deep Blue that runs on a single node of an IBM RS/6000 SP computer. For a
given iteration i, the software is assigned i-4 ply, which represents the minimum
depth search in software. The maximum depth reached in software is greater
than the minimum due to search extensions, and this value is given in the third
column. In these two positions, the maximum software depth is approximately
three times the minimum depth. The last column estimates the maximum
depth reached in hardware and software combined. It is not possible to directly
measure this number, but the estimate is based on results of simulating the
hardware search. When hardware search extensions and quiescence search are
taken into account, we typically see searches of 6 to 16 ply. Thus we can see
iteration 12 searches can reach as deep as 40 ply in positions of this type, which
suggests that position 2 is rather tactical after all. This shows that a super�cial
analysis of a position does not always assess the forcingness of the key lines of
play.

13r1r1q1k1/6p1/3b1p1p/1p1PpP2/1Pp5/2P4P/R1B2QP1/R5K1 w
14r2qk2r/pp3ppp/2p1pn2/4n3/1b6/3P2PP/PPPN1PB1/R1BQK2R b

13

Iteration Minimum Maximum Estimated maximum
software depth software depth combined depth

6 2 5 11-21
7 3 6 12-22
8 4 10 16-26
9 5 16 22-32
10 6 19 25-35
11 7 20 26-36
12 8 24 30-40

Table 3: Search characteristics, Position 2

4.3 Miscellaneous

The Deep Blue scores are composed of two 16-bit signed integers. The regular
search score is in one integer, and the tie breaker score is in the other. Therefore,
for a draw, the regular search score is zero and the tie breaker contains either
the static evaluation of a theoretically drawn position or the count of moves
until repetition, which is also useful choosing draws in the midgame. The count
of moves to repetition will be positive if the machine is striving for a draw or
the count will be negative if the machine is trying to avoid a draw.

Another idea in Deep Blue, implemented in both hardware and software, is
a pruning mechanism we call \no progress". It is based on the assumption that
if a move is good for a given side, it is best to play it earlier rather than later.
\No progress" is implemented by detecting if the current position could have
been reached by playing an alternate move at some earlier position on the search
path. If so, the search is terminated with a fail low. Although this algorithm
has only limited e�ect in most positions, situations which are somewhat blocked
and have few pieces present can observe noticeable bene�ts.

5 Hardware search

The hardware search is that part of the Deep Blue search that takes place on
the chess chip. A chess chip carries out a �xed-depth null-window search, which
includes a quiescence search. There are also various types of search extension
heuristics, both for the full-width and the quiescence portions of the search,
which are described below.

The hardware search is fast, but is relatively simple in the Deep Blue system
con�guration. To strike a balance between the speed of the hardware search and
the eÆciency and complexity of the software search, we limit the chess chips to
carry out only shallow searches. This typically results in 4- or 5-ply searches plus
quiescence in middlegame positions and somewhat deeper searches in endgames.

Once a hardware search is initiated, the host processor controlling that chip
is free to do other work, including performing the software search and initiating
hardware searches on other chips. The host polls the chips to determine when

14

a hardware search has completed. The host can abort a hardware search if
needed, e.g. if the search is taking too long, or is no longer relevant.

The fact that the hardware search uses a null window requires special han-
dling in the case where an exact value within a range is needed, rather than
a bound. The host can carry out a binary search, initiating a series of null-
window searches to determine the value. In many cases it is possible to use
multiple chess chips simultaneously to speed this operation.

The main parameters of the hardware search are described below:

1. Depth of search, which controls the depth of the full-width portion of the
hardware search. This is the primary parameter for controlling the size of
search.

2. Depth of o�set searches, to detect singular, binary, trinary conditions at
the root node of the hardware search tree.

3. Endgame rules assertions o� or on (always on in Deep Blue software code).
The switch is mainly for debugging purposes.

4. Endgame ROM assertions o� or on (always on in Deep Blue software code).
The switch is mainly for debugging purposes. The endgame ROMs on the
chess chip had the goal of improving the evaluation of common endgames
where the natural evaluation was inaccurate. The particular endgames
included were king and pawn vs. king, rook and pawn vs. rook, queen
vs. pawn, and rook vs. pawn. Each endgame has certain characteristic
patterns which are drawn, and some of these patterns are encoded in the
ROMs.

5. Number of \mating" checks allowed for each side in the quiescence search.
A mating check is a checking move which allows zero escape squares for
the king or any checking move which is a \contact"15 check by the queen.
This parameter is used to control the size of the quiescence search.

6. Number of singular checking moves allowed in the quiescence search (king
has one escape square, or queen or rook contact check, or any check given
while the checked side has a hung16 piece). This parameter is used to
control the size of the quiescence search.

7. Flags to enable testing of singular, binary, or trinary conditions at the
search root. These extensions are only implemented at the root of the
hardware search. Without access to a transposition table, more general
implementations could su�er from non-terminating searches.

8. Flag to ignore stalemate at one ply above quiescence.

15A contact check is a checking move to a square immediately adjacent to the opposing
king.

16A hung piece can be captured by the opponent with apparent safety.

15

9. Flag to allow a one-ply extension in the quiescence search after a pawn
moves to the 7th rank or, in some cases, pawn moves to the 6th rank.

10. Flag to allow a one-ply extension in the quiescence search when the side
to move has multiple hung pieces or a piece that is pinned and hung.

11. Flag to allow a one-ply extension in the quiescence search when the side
to move has one hung piece for consecutive plies.

12. Flag to allow a one-ply extension in the quiescence search if opponent has
any hung pieces.

6 Parallel search

Deep Blue is composed of a 30-node RS/6000 SP computer and 480 chess chips,
with 16 chips per node. The SP nodes communicate with each other using the
MPI (Message Passing Interface) standard [10]. Communication is via a high-
speed switch. The chess chips communicate with their host node via a Micro
Channel rbus. This heterogenous architecture has a strong inuence on the
parallel search algorithm used in Deep Blue, as discussed below.

6.1 Parallel Search Algorithm

To characterize the parallel search algorithm used in Deep Blue, we will use the
taxonomy given in [5].

1. Processor hierarchy. Deep Blue uses a static processor tree, with one
SP node controlling the other 29 nodes, which in turn control 16 chess
chips each. The static nature of the hierarchy is in part determined by
the fact that the chess chips are not general purpose processors and can
only act as slaves. In addition, the chess chips can only communicate
directly with their host node.

2. Control distribution. Deep Blue uses a centralized control of the parallel
search. The control is managed on the SP nodes, since the chess chips do
not have this functionality.

3. Parallelism possible. Deep Blue permits parallelism under the following
conditions:17

(a) Type 1 (PV) nodes. After the �rst move has been examined at
a PV node, all the alternatives may be examined in parallel (with
an o�set window to enable the selective search algorithm). Null
move searches, used to generate threat information for the selective
search, can also be carried out in parallel. Finally, PV nodes at the
hardware/software boundary can be searched in parallel. Because

17The terminology of node types used in this section was originally de�ned in [19].

16

the hardware search allows only null-window searches, a number of
searches are required to determine an exact score within a window.

(b) Good type 2 nodes (nodes where the �rst move \fails high", or
exceeds expectations). Most parallel algorithms do not allow or need
parallelism in this case. Deep Blue executes reduced depth o�set
searches as well as the null move searches in parallel after the �rst
move fails high. As above, these searches generate information for
use by the selective search.

(c) Bad type 2 nodes (nodes where the fail high move is not searched
�rst). The moves after the �rst are searched in parallel. After a fail
high move is found, all the alternatives are searched in parallel with
a reduced depth o�set search. Null move searches also can execute
in parallel at this point.

(d) Type 3 nodes (nodes where all the moves fail low). These moves
can all be searched in parallel.

4. Synchronization. Type 1 and type 2 nodes are synchronization points
for Deep Blue. The �rst move must be evaluated before parallelism is
allowed. There are also global synchronization points at the end of itera-
tions.

6.2 Parallel Search Implementation

The early iterations of the Deep Blue parallel search are carried out on the
master node. There is not much parallelism in the �rst few iterations, and the
master is fast enough (it has 16 chess chips) that there is little to be gained by
attempting to further parallelize the search.

As the search gets deeper, jobs get allocated throughout the system. There
are three major issues that need to be addressed:

� Load balancing. The search extensions algorithm used in Deep Blue
leads to widely varying tree sizes for a given search depth. This extends all
the way to the hardware, where the complex quiescence search can cause a
search to \blow up". This can lead to severe load balancing problems. The
solution used in Deep Blue was to abort long-running hardware searches
(more than 8,000 nodes) and push more of the search into software. This
gives additional opportunities for parallelism. Similarly, jobs on the worker
nodes can abort and return their job to the master for further splitting.

� Master overload. The performance bottleneck of the Deep Blue system
was the master processor. One method of alleviating this was to ensure
that the workers always had a job \on deck", ready to execute when it
completes its active job. This reduces the e�ect of the communication
latency between master and workers.

17

� Sharing between nodes. Workers do not directly communicate with
each other. This decision was made in order to simplify the implemen-
tation. Workers will generally pass their \expensive" transposition table
results up to the master.

As a �nal point, it should be noted that the Deep Blue parallel search is
non-deterministic. Various factors can inuence timing and processor job as-
signments. Although this was not a major concern, it makes debugging the
system much more diÆcult.

6.3 Parallel Search Performance

We have limited experimental results to assess the eÆciency of the Deep Blue
parallel search. The most accurate numbers were derived on a single-node ver-
sion of Deep Blue with 24 chess chips. We compared the 24 chip system with a
single chip system on a variety of positions. The results varied widely depending
on the tactical complexity of the position searched. For positions with many
deep forcing sequences speedups averaged about 7, for an observed eÆciency
of about 30%. For quieter positions, speedups averaged 18, for an observed
eÆciency of 75%. The non-deterministic nature of the search, particularly in
tactical positions, makes it more diÆcult to conduct these measurements.

It is diÆcult to assess the eÆciency of the full 30-node Deep Blue system.
Indirect evidence suggests an overall observed eÆciency of about 8% in tactical
positions and about 12% in quiet positions. It is clear that there is room for
improvement here. However it was a conscious design decision of the Deep Blue
team to focus on improving the evaluation function following the 1996 Kasparov
match, and the parallel search code was largely untouched between the 1996 and
1997 matches.

7 Evaluation Function

7.1 Overview

The Deep Blue evaluation function is essentially a sum of feature values. The
chess chip recognizes roughly 8,000 di�erent \patterns", and each is assigned a
value. Features range from very simple, such as a particular piece on a particular
square, to very complex, as will be described below in Section 7.2. A feature
value can be either static or dynamic. Static values are set once at the beginning
of a search. Dynamic values are also initialized at the beginning of a search,
but during the search they are scaled, via table lookup, based on the value and
type of pieces on the board at evaluation time. For example, king safety, passed
pawns, and pawn structure defects are sensitive to the amount of material on
the board.

The initialization of the feature values is done by the \evaluation function
generator", a sub-program which was run on the master node of SP system. The
Deep Blue evaluation function generator is run only at the root of the search

18

tree. It would likely be of great bene�t to run it at other nodes near the root
of the tree after a large positional change has occurred, such as trading queens.
Although the dynamic evaluation terms can handle this type of transition, some
static feature values may be left with less than ideal values. Unfortunately the
full evaluation function generator takes measurable wall clock time to run and
download, and partial downloading was considered too complex to implement.

The evaluation function generator has a second role beyond simply adjusting
feature values based on the context of the root position. The large number of
distinct feature values dictate that some sort of abstraction be imposed on the
values in order to keep the task manageable. The evaluation generator makes
these abstractions, dictating relationships between groups of related feature
values rather than setting them independently.

There are 54 registers (see Table 4) and 8,096 table entries (see Table 5)
for a total of 8,150 parameters that can be set in the Deep Blue evaluation
function.18 Some of the parameters correspond to chess situations that are not
physically realizable (e.g., pawns on the �rst rank), and others are used for
control purposes rather than corresponding to a particular combination of chess
features. There are about 8,000 actual features that can be detected in the chess
hardware.

It is impossible in a paper like this to describe all the details of the evaluation
function. We will present a detailed example of one table that gives a feel for
the nature of the evaluation function. A brief description of all the registers and
tables is given in Appendix A.

7.2 Extended Example: Rooks on Files

We now describe in detail the \Rooks on �les" table. We will begin by describing
the features that are detected, then discuss the values assigned to each combi-
nation of features, and show how the values are incorporated into the overall
position evaluation.

The chessboard is scanned, one �le at a time, and a pair of values is looked
up, one from the white rook table and one from the black rook table, for each
�le. The index bits for these tables are as follows:

� \unopposed" is a 1-bit subindex, with 0 indicating an enemy pawn on the
�le, and 1 indicating no enemy pawn on the �le.

� \blockage" is a 2-bit subindex with two interpretations, depending on
whether or not there is an enemy pawn on the �le. If there are no enemy
pawns, 0 indicates that my rook could safely move to the 7th or 8th ranks,
1 indicates that there is a minor piece guarded by a pawn that blocks the
�le, 2 indicates that enemy minor pieces guard the 7th and 8th ranks, and
3 indicates that the 7th and 8th are guarded by the enemy, but not by

18In actual fact, the number is even higher than this. Many of the registers and table entries
have two, three, or even four separate values. The extended example in Section 7.2 illustrates
one method of using multiple values.

19

Function Number of registers Data bits
Rooks on seventh rank 12 8
Bias 1 8
Opposing rook behind passed 1 9
Mpin and hung 1 7
Pinned and simple hung 1 8
Hung 4 7
Xraying 2 6
Pinned and hung 1 7
Permanent pin and simple hung 1 8
Knight trap 6 8
Rook trap 8 8
Queen trap 2 8
Wasted pawns 2 6
Bishop pair 2 7
Separated passed 2 8
Missing wing 2 10
Bishops of opposite colors 2 6
Evaluation control 2 32
Side to move 2 4

Table 4: Deep Blue evaluation registers

Function Number of tables Table entries Data bits
Multiple pawns 2 80 8
Minor on weak 2 192 12
Self block 2 320 5
Opponent block 2 128 4
Back block 2 160 5
Pinned 2 128 8
Mobility 8 128 9
Pawn structure 2 160 32
Passed pawns 2 320 32
Joint signature 1 256 8
Rooks on �les 2 192 10
Bishops 4 128 11
Pawn storm 2 128 18
Pawn shelter 2 384 14
Development 1 256 9
Trapped bishop 1 128 8
Signature 2 128 20
Contempt 1 256 8
Piece placement 1 1024 10

Table 5: Deep Blue evaluation tables

20

minor pieces. If there is an enemy pawn on the �le, 0 indicates that the
pawn is unprotected, 1 indicates that there is a minor piece guarded by
a pawn that shields the pawn, 2 indicates that the pawn is protected by
a minor piece, and 3 indicates \granite", i.e. the pawn is protected by
another pawn.

� \semi open" is a 1-bit subindex, with 0 indicating the presence of a pawn
of mine on the �le, and 1 indicating no pawns of mine on the �le.

� \rook count" is a 2-bit subindex, with only the values 0, 1 and 2 being
legal. rook count indicates the number of rooks for my side that are not
behind my own pawns.

� \centrality" is a 2-bit subindex, with �les \a" and \h" receiving value 0,
�les \b" and \g" receiving 1, �les \c" and \f" receiving 2, and �les \d"
and \e" receiving 3.

Each table entry is 10 bits, which is divided into three �elds:

� \kmodOpp" is a 2-bit �eld which causes extra points to be added to the
king safety if the sides have castled on opposite sites. The �eld chooses a
multiplier, which is 2 for 0, 1.5 for 1, 1 for 2, and .5 for 3. The base value
(see below) is multiplied by the appropriate value and then included in
the king safety calculation if the �le is adjacent to the enemy king. As a
special case, the rook �le is considered adjacent to the bishop �le.

� \kmod" is a 2-bit �eld, similar to kmodOpp, used when the kings have
castled on the same side.

� \base" is a 6-bit �eld which gets summed into the overall evaluation.
This is the \value" of the given formation, independent of king safety
considerations.

There is an additional factor to consider for rooks on �les. Under some cir-
cumstances, pawns can be semi-transparent to rooks. For example, if a pawn is
\levering", it is considered semi-transparent to rooks. For this purpose, lever-
ing is de�ned to be having the possibility of capturing an enemy pawn. Under
such circumstances, rooks get about half the value of the unblocked �le. This
feature was of critical importance in Game 2 of the 1997 match between Garry
Kasparov and Deep Blue.

The king-safety component of rooks on �les is not directly added to the
evaluation of a position, but is �rst scaled by the amount of material on the
board (via a table lookup). Positions with most of the pieces still on the board
may retain the full king-safety value, while endgames will have the value scaled
to close to zero. This, for example, encourages Deep Blue to trade pieces in
positions where its king is less safe than the opponent's king. The king safety
term itself is non-linear, and is quite complex, particularly before castling has
taken place.

21

7.3 Automated Evaluation Function Analysis

Although the large majority of the features and weights in the Deep Blue eval-
uation function were created/tuned by hand, there were two instances where
automated analysis tools aided in this process.

The �rst tool had the goal of identifying features in the Deep Blue I eval-
uation function that were \noisy", i.e., relatively insensitive to the particular
weights chosen. The hypothesis was that noisy features may require additional
context in order to be useful. A hill-climbing approach was used to explore
selected features (or feature subsets), and those that did not converge were can-
didates for further hand examination. A number of features in the Deep Blue I
evaluation were identi�ed, and signi�cantly modi�ed in Deep Blue II hardware,
including piece mobility, king safety, and rooks on �les.

A second tool was developed with the goal of tuning evaluation function
weights. This tool used a comparison training methodology [25] to analyze
weights related to pawn shelter. Training results showed that the hand-tuned
weights were systematically too low[26], and they were increased prior to the
1997 match. There is some evidence that this change led to improved play[26].

8 Miscellaneous

8.1 Opening book

The opening book in Deep Blue was created by hand, primarily by Grandmas-
ter Joel Benjamin, with assistance from Grandmasters Nick De Firmian, John
Fedorowicz, and Miguel Illescas. The book consisted of about 4,000 positions,19

and every position had been checked by Deep Blue in overnight runs. The
openings were chosen to emphasize positions that Deep Blue played well. In
general this included tactically complex openings, but also included more posi-
tional openings that Deep Blue handled well in practice. Opening preparation
was most extensive in those openings expected to arise in match play against
Kasparov. In fact, none of the Kasparov-speci�c preparation arose in the 1997
match.

Prior to a game, a particular repertoire was chosen for Deep Blue. There
were a number of possible repertoires to choose from, and the choice would be
made on the basis of the match situation and the previous experience playing
with the same color. Last minute changes or corrections were made in a small
\override" book.

8.2 Extended book

The extended book[6] in Deep Blue is a mechanism that allows a large Grand-
master game database to inuence and direct Deep Blue's play in the absence
of opening book information. The basic idea is to summarize the information

19This may seem surprisingly small. In fact, numerous openings did have minimal prepa-
ration, due to our con�dence in the extended book (Section 8.2).

22

available at each position of a 700,000 game database, and use the summary
information to nudge Deep Blue in the consensus direction of chess opening
theory.

The speci�c mechanism used in Deep Blue was to assign bonuses (or penal-
ties) to those moves in a given position that had been played in the Grandmaster
game database. For example, suppose that in the opening position of a chess
game the move d4 is given a 10 point bonus. Deep Blue would carry out its
regular search, but o�set the alpha-beta search window for d4 by 10 points.
Thus d4 would be preferred if it was no more than than 10 points worse the
best of the other moves.

A number of factors go into the extended book evaluation function, includ-
ing:

� The number of times a move has been played. A move frequently played
by Grandmasters is likely to be good.

� Relative number of times a move has been played. If move A has been
played many more times than move B, then A is likely to be better.

� Strength of the players that play the moves. A move played by Kasparov
is more likely to be good than a move played by a low-ranked master.

� Recentness of the move. A recently played move is likely to be good, an
e�ect that can in some cases dominate other factors.

� Results of the move. Successful moves are likely to be good.

� Commentary on the move. Chess games are frequently annotated, with
the annotators marking strong moves (with \!") and weak moves (with
\?"). Moves marked as strong are likely to be good; moves marked as
weak are likely to be bad.

� Game moves versus commentary moves. Annotators of chess games fre-
quently suggest alternative moves. In general, game moves are considered
more reliable than commentary moves, and are thus likely to be better.

We developed an ad hoc function that combined these factors in a nonlinear
way to produce a scalar value as output. The value of the bonus can be as high
as half a pawn in favorable situations. In some situations, where the bonus for
one move is very large and other move bonuses are much smaller, Deep Blue has
the option of playing a move immediately, without �rst carrying out a search.

The extended book was introduced into Deep Thought 2 in 1991, and was
used with good success through the matches with Kasparov. In [6], an example
is given of how the extended book worked in game 2 of the 1997 Kasparov-Deep
Blue match.

23

8.3 Endgame databases

The endgame databases in Deep Blue includes all chess positions with �ve or
fewer pieces20 on the board, as well as selected positions with six pieces that
included a pair of blocked pawns. The primary sources for these databases were
the Ken Thompson CD-ROMs [27] and additional databases supplied by Lewis
Stiller.

Endgames databases were used both o�-line and on-line. The o�-line usage
was during the design of the chess chips. Each chip had a ROM which stored
patterns to help evaluate certain frequently occurring chess endgames. The
databases were used to verify and evaluate these patterns. See Section 5 for
more details.

The software search used the databases in on-line mode. Each of the 30
general purpose processors in the Deep Blue system replicated the 4-piece and
important 5-piece databases on their local disk. The remaining databases, in-
cluding those with 6 pieces, were duplicated on two 20-GB RAID disk arrays,
and were available to all the general purpose processors through the SP switch.

Endgames were stored in the databases with one bit per position (indicating
lose or does-not-lose). If a position is reached during the search that had a known
value, it received a score composed of two parts: a high-order, game theoretic
value, and a low-order, tie-breaker value. The tiebreaker value is simply the
value produced by the evaluation function on the position in question. If this
score is suÆcient to cause a cuto�, the search immediately backs up this score.

For example, suppose Deep Blue had to choose between various possible
continuations that resulted in it playing the weak side of a rook and pawn
versus rook endgame. Deep Blue would, of course, prefer drawn positions over
lost ones. In addition, given the choice between di�erent drawn positions, it
would choose the one with the best evaluation function value.

The endgame databases did not play a critical role in the matches against
Kasparov. In the 1997 match, only game 4 approached an endgame that re-
quired access to the databases, but the ROMs on the chess chips had suÆcient
knowledge to recognize the rook and pawn versus rook draws that could have
arisen.

8.4 Time control

Chess games typically have a set of requirements on the speed of play, termed
the \time control". For example, the Deep Blue - Kasparov games initially
required 40 moves to be played in two hours. Failure to make the speci�ed
number of moves leads to forfeiting the game.

The time control mechanism in Deep Blue is relatively straightforward. Be-
fore each search, two time targets are set. The �rst is the normal time target,
set to be approximately the time remaining to the next time control divided by
the moves remaining. In practice, a considerable time bu�er is reserved, which
allows for suÆcient time to handle technical diÆculties, as well as saving time

20We use the term \piece" to also include pawns.

24

for a possible \sudden-death" phase. The second time target is the panic time
target, which is roughly one third of the remaining time.

If, at the normal time target, the situation is \normal", a time-out occurs
and the current best move is played. There are a few conditions under which
Deep Blue will go beyond its normal target into \panic time".

� The current best move has dropped 15 points or more from the score of
the previous iteration. In this case, the search continues until either a new
move is found within the 15 point margin, the iteration is completed, or
the panic time target is reached.

� The best move from the previous iteration is in a potential \fail-low" state.
Continue until this state is resolved, or the panic time target is reached.
If this move ends up dropping 15 points or more from its prior value,
continue as in the previous case.

� A new move is in a potential \fail-high" state. Continue until this state
is resolved, or the panic time target is reached.

These conditions are triggered frequently during a game, but it is quite rare
to actually go all the way to the panic time target. In the 1997 match with
Kasparov, this happened only once.

9 Conclusion

The success of Deep Blue in the 1997 match was not the result of any one fac-
tor. The large searching capability, non-uniform search, and complex evaluation
function were all critical. However other factors also played a role, e.g., endgame
databases, the extended book, and evaluation function tuning.

It is clear, however, that there were many areas where improvements could
have been made. With additional e�ort, the parallel search eÆciency could have
been increased. The hardware search and evaluation could have been made more
eÆcient and exible with the addition of an external FPGA. Current research
(e.g., [11]) suggests that the addition of pruning mechanisms to Deep Blue
might have signi�cantly improved the search. Evaluation function tuning, both
automatic and manual, was far from complete.

In the course of the development of Deep Blue, there were many design
decisions that had to be made. We made particular choices, but there were
many alternatives that were left unexplored. We hope this paper encourages
further exploration of this space.

Acknowledgments

We would like to gratefully acknowledge the help of the following people: CJ
Tan, Jerry Brody, Joel Benjamin, John Fedorowicz, Nick De Firmian, Miguel
Illescas, Lewis Stiller, Don Maddox, Gerald Tesauro, Joefon Jann, Thomas

25

Anantharaman, Andreas Nowatzyk, Peter Jansen, and Mike Browne. We would
also like to thank the editor and the anonymous referees for their helpful com-
ments.

A Evaluation Tables and Registers

� Rooks on seventh: There are 12 8-bit registers, for the various combi-
nations of fWhite,Blackg � fsingle,doubledg � fregular,absolute-king-
trapped,absolute-king-not-trappedg.

� Bias: This register was designed for use with external (o�-chip) hardware.

� Rook behind passed: A bonus is awarded for a rook behind a passed pawn
of the same color.

� Mpin and hung: A bonus is awarded when the opponent has a piece that
is hung and pinned against a piece equal in value to the pinner.

� Pinned and simple hung: A bonus is awarded when the opponent has a
piece that is pinned and hung.

� Hung: A bonus is awarded if the opponent has a piece that is hung.

� Xraying: A bonus is awarded for having an \xray attack", i.e., an attack
masked by one's own piece.

� Pinned and hung: A bonus is awarded when the opponent has a piece that
is both pinned and hung. \Hung" is distinguished from \simple hung" by
a more detailed analysis of the capture sequence.

� Permanent pin and simple hung. A bonus is awarded for a permanent pin
of a piece.

� Knight trap: These 6 registers (3 for each side) provide penalties for some
frequently occurring situations where knights can get trapped.

� Rook trap: These 8 registers (4 for each side) provide penalties for some
frequently occurring situations where rooks can get trapped.

� Queen trap: These 2 registers (1 for each side) provide penalties for when
there is no safe queen mobility.

� Wasted pawns: A penalty is assessed for pawn groups that have \wasted"
pawns. A pawn group has a wasted pawn if it is unable to create a passed
pawn against a smaller group of enemy pawns. There are two values, one
each for White and Black, and the penalties are dynamically scaled by the
amount of material on the board at the time of evaluation.

� Bishop pair: A bonus may be awarded for having a pair of bishops. There
are two values, on each for White and Black.

26

� Separated passed: Widely separated passed pawns are advantageous if
trying to win in a bishops of opposite color endgame.

� Missing wing: Provides a penalty for the side that is ahead if it allows
itself to be left with pawns on only one side.

� BOC: A set of reductions on the evaluation for pure bishops of opposite
color, and various combinations of major pieces and bishops of opposite
color.

� Side to move: A bonus may be given for being on move.

� Multiple pawns: There are two 80-entry tables, for the various combina-
tions of fWhite,Blackg � fbackward,not backwardg� fopposed,unopposedg
� fdoubled,tripled+g � fah,bg,cf,deg � fisolated,pseudo-isolated,supported,duog.
Some combinations are not legal. There is an 8-bit penalty value associ-
ated with each realizable combination.

� Minor on weak: This pair of tables gives bonuses for minor pieces on weak
squares, taking into account such factors as advancement, centrality, pawn
support, minor piece type, challengability, and screened status.

� Self block: This table assesses how each side's bishops are restrained by
their own pawn.

� Opp block: This table assesses how each sides's bishops are restrained by
the opponents's pawns.

� Back block: This table assesses how doubled pawns can restrain a bishop's
mobility.

� Pinned: Pins are awarded bonuses depending on the strength of the pin
and the amount of pressure on the pinned piece.

� Mobility: The mobility to each square on the board is summed to produce
on overall mobility score. Each square has 16 possible levels of mobility,
from maximum Black control through maximum White control. The con-
trol level and the square location determine each square's contribution.

� Pawn structure: This table assesses various features of pawn structure not
handled elsewhere.

� Passed pawns: This table assesses the worth of passed pawns.

� Joint signature: This table allows adjustments to be made for particular
piece matchups.

� Rooks on �les: There are two 192-entry tables, for the various combina-
tions of fWhite,Blackg � fopposed,unopposedg � f4 blockage typesg �
fsemi-open,not semi-openg � fah,bg,cf,deg � f0, 1, or 2 rooksg. There
is an 6-bit value associated with each combination, and two 2-bit ags
indicating how the value is to be used in the king-safety calculation.

27

� Bishops: Bishops are awarded bonuses for the value of the diagonals they
control. The diagonals are individually assessed, and include factors such
as transparency (ability to open at will), king safety, and target of attack.

� Pawn storm: This table helps to assess pawns being used to attack the
opponent's king.

� Pawn shelter: This table evaluates the pawn shelter that protects or may
protect one's own king.

� Development: This table measures the di�erences in development between
the two sides, factors in the king situation, and gives a bonus to the side
that is ahead in development/king safety.

� Trapped bishop: This table is used to detect situations where bishops can
become trapped.

� Signature: These tables, one for each side, allow adjustments to be made
for particular piece combinations that work well or poorly together. For
example, queen and knight are thought to cooperate better than queen
and bishop.

� Contempt: The table gives the adjustment to the draw score. It is used
to either prefer or avoid draws, depending on the opponent and the match
situation. The adjustment is material dependent.

� Piece placement: This table, in common use in most chess programs, has
one entry for each piece type on each square of the board.

B Summary of Deep Blue and Predecessors

Table 6 gives some characteristics of the various systems in the Deep Blue
lineage. There are a number of quali�cations on the values in this table.

� The ChipTest and Deep Thought systems used software adjustments to
account for features not recognized by the evaluation hardware.

� The Deep Blue systems allowed the evaluation features to interact in ways
that were not possible in earlier systems.

� The demo version of Deep Blue Jr. was restricted to one second of compu-
tation time on one processor, did not detect repetition with game history,
and had a �xed evaluation function that did not vary with game stage.

28

System Name First played Processors Nodes/second Feature
groups

ChipTest 1986 1 50K 1
ChipTest-m 1987 1 400K 1
Deep Thought 1988 2{6 700K{2M 4
Deep Thought 2 1991 14{24 4M{7M 4
Deep Blue I 1996 216 50M{100M 32
Deep Blue II 1997 480 100M{200M 38
Deep Blue Jr. 1997 24 20M-30M 38
Deep Blue Jr. demo 1997 1 2M 38

Table 6: Summary of Systems

References

[1] T. S. Anantharaman. Extension heuristics. ICCA Journal, 14(2):135{143,
1991.

[2] T.S. Anantharman, M.S. Campbell, and F-h. Hsu. Singular extensions:
Adding selectivity to brute-force searching. Arti�cial Intelligence, 43(1):99{
110, 1990. Also published in the Journal of the International Computer
Chess Association, vol. 11 (1988), no. 4.

[3] D.F. Beal. Experiments with the Null move. In D.F. Beal, editor, Advances
in Computer Chess 5, pages 65{79. Elsevier Science, 1989.

[4] H. Berliner. Chess as problem solving: The development of a tactics ana-
lyzer. PhD thesis, Carnegie Mellon University, Pittsburgh, 1974.

[5] M.G. Brockington. A taxonomy of parallel game-tree search algorithms.
ICCA Journal, 19(3):162{174, 1996.

[6] M. Campbell. Knowledge Discovery in Deep Blue. Communications of the
ACM, 42(11):65{67, Nov 1999.

[7] J.H. Condon and K. Thompson. Belle chess hardware. In Advances in
Computer Chess 3, pages 45{54. Pergamon Press, Oxford, England, 1982.

[8] R. Feldmann. Spielbaumsuche mit massiv parallelen Systemen. PhD thesis,
Universit�at-Gesamthochschule Paderborn, Germany, 1993.

[9] G. Goetsch and M.S. Campbell. Experiments with the null-move heuris-
tic. In T.A. Marsland and J. Schae�er, editors, Computers, Chess, and
Cognition, pages 159{168. Springer, 1990.

[10] W. Gropp, E. Lusk, and A. Skjellum. Using MPI, 2nd Edition. MIT Press,
1999. ISBN 0-262-57132-3.

29

[11] E. A. Heinz. Scalable Search in Computer Chess. Friedrick Vieweg & Son,
2000.

[12] F-h. Hsu. A Two-Million Moves/s CMOS Single-Chip Chess Move Gener-
ator. IEEE Journal of Solid State Circuits, 22(5):841{846, 1987.

[13] F-h. Hsu. Large-Scale Parallelization of Alpha-Beta Search: An Algorithmic
and Architectural Study. PhD thesis, Carnegie Mellon, Feb 1990.

[14] F-h. Hsu. IBM's Deep Blue Chess Grandmaster Chips. IEEE Micro, pages
70{81, Mar-Apr 1999.

[15] F-h. Hsu. Behind Deep Blue. Princeton University Press, to appear 2002.

[16] F-h. Hsu, T. Anantharman, M. Campbell, and A. Nowatzyk. A Grand-
master Chess Machine. Scienti�c American, pages 44{50, October 1990.

[17] F-h. Hsu, T.S. Anantharman, M.S. Campbell, and A. Nowatzyk. Deep
Thought. In T. Anthony Marsland and Jonathan Schae�er, editors, Com-
puters, Chess, and Cognition, pages 55{78. Springer-Verlag, 1990.

[18] A. Junghanns. Are there practical alternatives to alpha-beta in computer
chess? Journal of the International Computer Chess Association, 21(1):14{
32, 1998.

[19] D.E. Knuth and R.W. Moore. An analysis of alpha-beta pruning. Arti�cial
Intelligence, 6(4):293{326, 1975.

[20] D.N.L. Levy, D. Broughton, and M. Taylor. The SEX algorithm in com-
puter chess. ICCA Journal, 12(1):10{21, 1989.

[21] D. A. McAllester and D. Yuret. Alpha-beta-conspiracy search.
http://www.research.att.com/~dmac/abc.ps, 1993.

[22] M. Newborn. Kasparov versus Deep Blue: Computer chess comes of age.
Springer, 1997.

[23] A. Reinefeld. An improvement to the scout tree-search algorithm. ICCA
Journal, 6(4):4{14, 1983.

[24] D.J. Slate and L.R. Atkin. Chess 4.5 - The Northwestern University chess
program. In P.W. Frey, editor, Chess Skill in Man and Machine, pages
82{118. Springer-Verlag, New York, 1977.

[25] G. Tesauro. Connectionist learning of expert preferences by comparison
training. In D. Touretzky, editor, Advances in Neural Information Process-
ing Systems 1 (NIPS-88), pages 99{106. Morgan Kaufmann, 1989.

[26] G. Tesauro. Comparison training of chess evaluation functions. In
J. Furnkranz and M. Kumbat, editors,Machines that Learn to Play Games,
pages 117{130. Nova Science Publishers, 2001.

30

[27] K. Thompson. Retrograde analysis of certain endgames. Journal of the
International Computer Chess Association, 9(3):594{597, 1986.

The following are trademarks of International Business Machines Corporation:
IBM, Deep Blue, RS/6000, SP, AIX, Micro Channel.

31

